We prove regularity and extension results for Green’s operators that are associated to strictly elliptic second order divergence-type linear PDO’s with coefficients in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C^{1,\alpha}(\overline{\Omega})$\end{document}. Here α ∈ (0, 1) and Ω ⊂ Rn, n ≥ 3, is a bounded C2,α domain. The regularity result gives boundary estimates for the derivatives up to order (2 + α) of the associated Green’s function. With the aid of this regularity result, we then extend the Green’s operator to a globally defined integral operator whose second order partial derivatives are Calderón–Zygmund singular integrals. We also show that, under reasonable a priori assumptions, the C2,α regularity of the domain is necessary for the aforementioned extension of the Green’s operator to a weakly singular integral operator, belonging to the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\rm{SK}}^{-2}_{{\bf{R}}^n}(\alpha)$\end{document}.