Stabilized finite elements with equal order of interpolation for soil dynamics problems

被引:0
|
作者
M. Pastor
O. C. Zienkiewicz
T. Li
L. Xiaoqing
M. Huang
机构
[1] Centro de Estudios y Experimentación de Obras Públicas Cedex,
[2] University College of Swansea,undefined
[3] University of Hohai,undefined
[4] MacMaster University,undefined
关键词
Pore Pressure; Saturated Soil; Solid Skeleton; Spurious Oscillation; Harmonic Loading;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate prediction of the behaviour of geostructures is based on the strong coupling between the pore fluid and the solid skeleton. If the relative acceleration of the fluid phase to the skeleton is neglected, the equations describing the problem can be written in terms of skeleton displacements (or velocities) and pore pressures.
引用
收藏
页码:3 / 33
页数:30
相关论文
共 50 条
  • [41] High accuracy nonconforming finite elements for fourth order problems
    Wang Ming
    Zu PengHe
    Zhang Shuo
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 2183 - 2192
  • [42] Stabilized extended finite elements for the approximation of saddle point problems with unfitted interfaces
    Cattaneo, Laura
    Formaggia, Luca
    Iori, Guido Francesco
    Scotti, Anna
    Zunino, Paolo
    [J]. CALCOLO, 2015, 52 (02) : 123 - 152
  • [43] High-order finite elements for structural dynamics applications
    Lisandrin, Paolo
    Van Tooren, Michel
    [J]. JOURNAL OF AIRCRAFT, 2008, 45 (02): : 388 - 401
  • [44] A quadratic equal-order stabilized finite element method for the conduction-convection equations
    Huang, Pengzhan
    Feng, Xinlong
    He, Yinnian
    [J]. COMPUTERS & FLUIDS, 2013, 86 : 169 - 176
  • [45] FINITE-ELEMENTS WITH BOUNDARY INTERPOLATION
    VANDERWEEN, F
    [J]. COMPUTERS & STRUCTURES, 1991, 39 (06) : 577 - 582
  • [46] TETRAHEDRAL FINITE-ELEMENTS FOR INTERPOLATION
    BUNEMAN, O
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (02): : 223 - 248
  • [47] p Interpolation error estimates for edge finite elements of variable order in two dimensions
    Demkowicz, L
    Babuska, I
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) : 1195 - 1208
  • [48] The two-grid stabilization of equal-order finite elements for the stokes equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 2054 - 2061
  • [49] Numerical modeling of viscoelastic flows using equal low-order finite elements
    Li, Xikui
    Han, Xianhong
    Wang, Xuanping
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 570 - 581
  • [50] Open boundary value problems in ocean dynamics by finite elements
    Tanaka, Toyoki
    Ono, Yoshio
    Ishise, Toshikazu
    [J]. ADVANCES IN WATER RESOURCES, 1982, 5 (01) : 21 - 28