Integrating the constitutive equations in plasticity in order to update the stresses is the most important part of an elastoplastic finite element analysis. Here, a von-Mises plasticity model along with the isotropic and kinematic hardenings is taken into account in the small strain realm. An accurate integration is formulated by converting the differential constitutive equations into an augmented stress space and utilizing the return mapping algorithm. Subsequently, a broad range of numerical tests are performed to investigate the accuracy and performance of the proposed integration. The results demonstrate the robustness of the new integration scheme.