Minkowski content for reachable sets

被引:0
|
作者
Piermarco Cannarsa
Marc-Olivier Czarnecki
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] Institut de Mathèmatiques et Modèlisation de Montpellier,undefined
[3] UMR 5149 CNRS,undefined
来源
manuscripta mathematica | 2010年 / 131卷
关键词
28A78; 28A75; 93C10; 93B03;
D O I
暂无
中图分类号
学科分类号
摘要
In 1955, Martin Kneser showed that the Minkowski content of a compact p-rectifiable subset M of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^n}$$\end{document} is equal to its p-Hausdorff measure: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim_{t\to 0, t > 0}\frac{{\mathcal{L}}^n\left(\overline{B}(M,t)\right)}{\alpha(n-p) t^{(n-p)}}={\mathcal{H}}^p(M).$$\end{document}We extend his result to the reachable sets of a linear control system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}= f(x) u,$$\end{document}and we give an interpretation in terms of a Riemannian distance.
引用
收藏
页码:507 / 530
页数:23
相关论文
共 50 条
  • [1] Minkowski content for reachable sets
    Cannarsa, Piermarco
    Czarnecki, Marc-Olivier
    [J]. MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 507 - 530
  • [2] On the outer Minkowski content of sets
    Elena Villa
    [J]. Annali di Matematica Pura ed Applicata, 2009, 188 : 619 - 630
  • [3] On the outer Minkowski content of sets
    Villa, Elena
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 619 - 630
  • [4] Inner Approximations of Reachable Sets for Nonlinear Systems Using the Minkowski Difference
    Wetzlinger, Mark
    Kulmburg, Adrian
    Althoff, Matthias
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2033 - 2038
  • [5] Minkowski content and local Minkowski content for a class of self-conformal sets
    Freiberg, Uta
    Kombrink, Sabrina
    [J]. GEOMETRIAE DEDICATA, 2012, 159 (01) : 307 - 325
  • [6] Minkowski content and local Minkowski content for a class of self-conformal sets
    Uta Freiberg
    Sabrina Kombrink
    [J]. Geometriae Dedicata, 2012, 159 : 307 - 325
  • [7] Outer Minkowski content for some classes of closed sets
    Luigi Ambrosio
    Andrea Colesanti
    Elena Villa
    [J]. Mathematische Annalen, 2008, 342 : 727 - 748
  • [8] Outer Minkowski content for some classes of closed sets
    Ambrosio, Luigi
    Colesanti, Andrea
    Villa, Elena
    [J]. MATHEMATISCHE ANNALEN, 2008, 342 (04) : 727 - 748
  • [9] ESTIMATING REACHABLE SETS
    GRANTHAM, WJ
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1981, 103 (04): : 420 - 422
  • [10] REACHABLE SETS FOR TRACKING
    WONG, PJ
    KORSAK, AJ
    [J]. OPERATIONS RESEARCH, 1974, 22 (03) : 497 - 509