Minkowski content and local Minkowski content for a class of self-conformal sets

被引:0
|
作者
Uta Freiberg
Sabrina Kombrink
机构
[1] Universität Siegen,
[2] FB 6—Mathematik,undefined
[3] Universität Bremen,undefined
[4] FB 3—Mathematik,undefined
来源
Geometriae Dedicata | 2012年 / 159卷
关键词
Minkowski content; Conformal iterated function system; Self-conformal set; Fractal curvature measures; 28A80; 28A75;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate (local) Minkowski measurability of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}^{1+\alpha}}$$\end{document} images of self-similar sets. We show that (local) Minkowski measurability of a self-similar set K implies (local) Minkowski measurability of its image F and provide an explicit formula for the (local) Minkowski content of F in this case. A counterexample is presented which shows that the converse is not necessarily true. That is, F can be Minkowski measurable although K is not. However, we obtain that an average version of the (local) Minkowski content of both K and F always exists and also provide an explicit formula for the relation between the (local) average Minkowski contents of K and F.
引用
收藏
页码:307 / 325
页数:18
相关论文
共 50 条
  • [1] Minkowski content and local Minkowski content for a class of self-conformal sets
    Freiberg, Uta
    Kombrink, Sabrina
    [J]. GEOMETRIAE DEDICATA, 2012, 159 (01) : 307 - 325
  • [2] Fractal curvature measures and Minkowski content for self-conformal subsets of the real line
    Kesseboehmer, Marc
    Kombrink, Sabrina
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2474 - 2512
  • [3] Minkowski content for reachable sets
    Piermarco Cannarsa
    Marc-Olivier Czarnecki
    [J]. manuscripta mathematica, 2010, 131 : 507 - 530
  • [4] Minkowski content for reachable sets
    Cannarsa, Piermarco
    Czarnecki, Marc-Olivier
    [J]. MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 507 - 530
  • [5] On the outer Minkowski content of sets
    Elena Villa
    [J]. Annali di Matematica Pura ed Applicata, 2009, 188 : 619 - 630
  • [6] On the outer Minkowski content of sets
    Villa, Elena
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 619 - 630
  • [7] Lacunarity, Minkowski content, and self-similar sets in R
    Frantz, M
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 77 - 91
  • [8] Outer Minkowski content for some classes of closed sets
    Luigi Ambrosio
    Andrea Colesanti
    Elena Villa
    [J]. Mathematische Annalen, 2008, 342 : 727 - 748
  • [9] Outer Minkowski content for some classes of closed sets
    Ambrosio, Luigi
    Colesanti, Andrea
    Villa, Elena
    [J]. MATHEMATISCHE ANNALEN, 2008, 342 (04) : 727 - 748
  • [10] Gap sequences of self-conformal sets
    Deng, Juan
    Wang, Qin
    Xi, Lifeng
    [J]. ARCHIV DER MATHEMATIK, 2015, 104 (04) : 391 - 400