On nodal Enriques surfaces and quartic double solids

被引:0
|
作者
Colin Ingalls
Alexander Kuznetsov
机构
[1] University of New Brunswick,Department of Mathematics and Statistics
[2] Steklov Mathematical Institute,Algebraic Geometry Section
[3] Independent University of Moscow,The Poncelet Laboratory
[4] SU-HSE,Laboratory of Algebraic Geometry
来源
Mathematische Annalen | 2015年 / 361卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of singular double coverings X→P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \rightarrow {\mathbb {P}}^3$$\end{document} ramified in the degeneration locus D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of a family of 2-dimensional quadrics. These are precisely the quartic double solids constructed by Artin and Mumford as examples of unirational but nonrational conic bundles. With such a quartic surface D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D,$$\end{document} one can associate an Enriques surface S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} which is the factor of the blowup of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} by a natural involution acting without fixed points (such Enriques surfaces are known as nodal Enriques surfaces or Reye congruences). We show that the nontrivial part of the derived category of coherent sheaves on this Enriques surface S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is equivalent to the nontrivial part of the derived category of a minimal resolution of singularities of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}.
引用
收藏
页码:107 / 133
页数:26
相关论文
共 50 条
  • [21] Non-factorial quartic double solids
    Hong, Kyusik
    ADVANCES IN GEOMETRY, 2014, 14 (01) : 161 - 174
  • [22] Gromov Elliptic Resolutions of Quartic Double Solids
    Ciliberto, Ciro
    Zaidenberg, Mikhail
    TAIWANESE JOURNAL OF MATHEMATICS, 2025,
  • [23] Elliptic surfaces and contact conics for a 3-nodal quartic
    Tumenbayar, Khulan
    Tokunaga, Hiro-o
    HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (01) : 223 - 244
  • [24] K3 double structures on Enriques surfaces and their smoothings
    Gallego, Francisco Javier
    Gonzalez, Miguel
    Purnaprajna, Bangere P.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (05) : 981 - 993
  • [25] On an Enriques Surface Associated With a Quartic Hessian Surface
    Shimada, Ichiro
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (01): : 213 - 246
  • [26] On K3 double planes covering Enriques surfaces
    Peters, Chris
    Sterk, Hans
    MATHEMATISCHE ANNALEN, 2020, 376 (3-4) : 1599 - 1628
  • [27] DEPTH OF RATIONAL DOUBLE POINTS ON QUARTIC SURFACES
    KATO, M
    NARUKI, I
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1982, 58 (02) : 72 - 75
  • [28] On K3 double planes covering Enriques surfaces
    Chris Peters
    Hans Sterk
    Mathematische Annalen, 2020, 376 : 1599 - 1628
  • [29] PERIODS OF ENRIQUES SURFACES
    NAMIKAWA, Y
    MATHEMATISCHE ANNALEN, 1985, 270 (02) : 201 - 222
  • [30] Real Enriques surfaces
    Degtyarev, A
    Itenberg, I
    Kharlamov, V
    REAL ENRIQUES SURFACES, 2000, 1746 : VII - +