Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy

被引:0
|
作者
Estelle Deschamps
Isabelle Schmitz-Afonso
Annick Schaumann
Emmanuelle Dé
Corinne Loutelier-Bourhis
Stéphane Alexandre
Carlos Afonso
机构
[1] Université de Rouen,Normandie Univ, COBRA, UMR 6014 and FR 3038
[2] INSA de Rouen,Normandie Univ, PBS, UMR 6270 and FR 3038
[3] CNRS,undefined
[4] IRCOF,undefined
[5] Université de Rouen,undefined
[6] INSA de Rouen,undefined
[7] CNRS,undefined
[8] CURIB,undefined
来源
关键词
Ion mobility spectrometry; Mass spectrometry; Cardiolipins; Phospholipids; CCS calibration;
D O I
暂无
中图分类号
学科分类号
摘要
Collision cross section (CCS) values are descriptors of the 3D structure of ions which can be determined by ion mobility spectrometry (IMS). Currently, most lipidomic studies involving CCS value determination concern eukaryote samples (e.g. human, bovine) and to a lower extent prokaryote samples (e.g. bacteria). Here, we report CCS values obtained from traveling wave ion mobility spectrometry (TWCCSN2) measurements from the bacterial membrane of Pseudomonas aeruginosa—a bacterium ranked as priority 1 for the R&D of new antibiotics by the World Health Organization. In order to cover the lack of reference compounds which could cover the m/z and CCS ranges of the membrane lipids of P. aeruginosa, three calibrants (polyalanine, dextran and phospholipids) were used for the TWCCSN2 calibration. A shift from the published lipid CCS values was systematically observed (ΔCCS% up to 9%); thus, we proposed a CCS correction strategy. This correction strategy allowed a reduction in the shift (ΔCCS%) between our measurements and published values to less than 2%. This correction was then applied to determine the CCS values of Pseudomonas aeruginosa lipids which have not been published yet. As a result, 32 TWCCSN2 values for [M+H]+ ions and 24 TWCCSN2 values for [M−H]− ions were obtained for four classes of phospholipids (phosphatidylethanolamines (PE), phosphatidylcholines (PC), phosphatidylglycerols (PG) and diphosphatidylglycerols—known as cardiolipins (CL)).
引用
收藏
页码:8123 / 8131
页数:8
相关论文
共 50 条
  • [31] Ion Mobility-Mass Spectrometry of Complex Carbohydrates: Collision Cross Sections of Sodiated N-linked Glycans
    Pagel, Kevin
    Harvey, David J.
    ANALYTICAL CHEMISTRY, 2013, 85 (10) : 5138 - 5145
  • [32] A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry
    George, Anais C.
    Schmitz-Afonso, Isabelle
    Marie, Vincent
    Colsch, Benoit
    Fenaille, Francois
    Afonso, Carlos
    Loutelier-Bourhis, Corinne
    ANALYTICA CHIMICA ACTA, 2022, 1226
  • [33] Traveling-Wave Ion Mobility Mass Spectrometry Analysis of Isomeric Modified Peptides Arising from Chemical Cross-Linking
    Santos, Luiz F. A.
    Iglesias, Amadeu H.
    Pilau, Eduardo J.
    Gomes, Alexandre F.
    Gozzo, Fabio C.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (12) : 2062 - 2069
  • [34] Petroleomics by Traveling Wave Ion Mobility-Mass Spectrometry Using CO2 as a Drift Gas
    Fasciotti, Maira
    Lalli, Priscila M.
    Klitzke, Clecio F.
    Corilo, Yuri E.
    Pudenzi, Marcos A.
    Pereira, Rosana C. L.
    Bastos, Wagner
    Daroda, Romeu J.
    Eberlin, Marcos N.
    ENERGY & FUELS, 2013, 27 (12) : 7277 - 7286
  • [35] Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry
    Thalassinos, Konstantinos
    Grabenauer, Megan
    Slade, Susan E.
    Hilton, Gillian R.
    Bowers, Michael T.
    Scrivens, James H.
    ANALYTICAL CHEMISTRY, 2009, 81 (01) : 248 - 254
  • [36] Identification of novel isomeric pectic oligosaccharides using hydrophilic interaction chromatography coupled to traveling-wave ion mobility mass spectrometry
    Leijdekkers, Antonius G. M.
    Huang, Jie-Hong
    Bakx, Edwin J.
    Gruppen, Harry
    Schols, Henk A.
    CARBOHYDRATE RESEARCH, 2015, 404 : 1 - 8
  • [37] Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry
    Li, Hongli
    Giles, Kevin
    Bendiak, Brad
    Kaplan, Kimberly
    Siems, William F.
    Hill, Herbert H., Jr.
    ANALYTICAL CHEMISTRY, 2012, 84 (07) : 3231 - 3239
  • [38] Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas
    Fasciotti, Maira
    Sanvido, Gustavo B.
    Santos, Vanessa G.
    Lalli, Priscila M.
    McCullagh, Michael
    de Sa, Gilberto F.
    Daroda, Romeu J.
    Peter, Martin G.
    Eberlin, Marcos N.
    JOURNAL OF MASS SPECTROMETRY, 2012, 47 (12): : 1643 - 1647
  • [39] Extending the competitive threshold collision-induced dissociation of Zn(II) ternary complexes using traveling-wave ion mobility-mass spectrometry
    Senyah, Kwabena N.
    Asare, Perfect
    Wilcox, Jonathan D.
    Angiolari, Federica
    Spezia, Riccardo
    Angel, Laurence A.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2023, 488
  • [40] Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections
    Stow, Sarah M.
    Goodwin, Cody R.
    Kliman, Michal
    Bachmann, Brian O.
    McLean, John A.
    Lybrand, Terry P.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (48): : 13812 - 13820