Bonnesen-style inequalities on surfaces of constant curvature

被引:0
|
作者
Min Chang
机构
[1] Southwest University,School of Mathematics and Statistics
关键词
Isoperimetric inequality; Bonnesen-style inequality; Isoperimetric deficit; Surface of constant curvature; 52A22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some Bonnesen-style inequalities on a surface Xκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {X}_{\kappa}$\end{document} of constant curvature κ (i.e., the Euclidean plane R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{2}$\end{document}, projective plane RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}P^{2}$\end{document}, or hyperbolic plane H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^{2}$\end{document}) are proved. The method is integral geometric and gives a uniform proof of some Bonnesen-style inequalities alone with equality conditions.
引用
收藏
相关论文
共 50 条