Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

被引:0
|
作者
Jun Liu
机构
[1] China University of Mining and Technology,School of Mathematics
关键词
Expansive matrix; (variable)Hardy space; Molecule; Calderón–Zygmund operator; 42B35; 42B30; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb {R}^n\rightarrow (0,\infty ]$$\end{document} be a variable exponent function satisfying the globally log-Hölder continuous condition and A a general expansive matrix on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. Let HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} be the variable anisotropic Hardy space associated with A defined via the non-tangential grand maximal function. In this article, via the known atomic characterization of HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, the author establishes its molecular characterization with the known best possible decay of molecules. As an application, the author obtains a criterion on the boundedness of linear operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, which is used to prove the boundedness of anisotropic Calderón–Zygmund operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}. In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} to the variable Lebesgue space Lp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}(\mathbb {R}^n)$$\end{document} is also presented. All these results are new even in the classical isotropic setting.
引用
收藏
相关论文
共 50 条
  • [31] Calderón–Zygmund operators in Morrey spaces
    Marcel Rosenthal
    Hans Triebel
    Revista Matemática Complutense, 2014, 27 (1) : 1 - 11
  • [32] Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    Analysis and Mathematical Physics, 2022, 12
  • [33] DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS
    Wang, Wenhua
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 365 - 384
  • [34] Hardy Factorization in Terms of Multilinear CalderÓN–Zygmund Operators using Morrey Spaces
    Nguyen Anh Dao
    Brett D. Wick
    Potential Analysis, 2023, 59 : 41 - 64
  • [35] On the Continuity of Strongly Singular Calderón–Zygmund-Type Operators on Hardy Spaces
    Tiago Picon
    Claudio Vasconcelos
    Integral Equations and Operator Theory, 2023, 95
  • [36] Calderón-Zygmund-Type Operators on Weighted Weak Hardy Spaces over ℝn
    Quek T.
    Yang D.
    Acta Mathematica Sinica, 2000, 16 (1) : 141 - 160
  • [37] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators
    Yangyang Zhang
    Dachun Yang
    Wen Yuan
    Songbai Wang
    Science China Mathematics, 2021, 64 : 2007 - 2064
  • [38] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators
    Yangyang Zhang
    Dachun Yang
    Wen Yuan
    Songbai Wang
    Science China Mathematics, 2021, 64 (09) : 2007 - 2064
  • [39] The Boundedness of Calderón-Zygmund Operators by Wavelet Characterization
    Cheng-Cong HUNG
    Ming-Yi LEE
    Acta Mathematica Sinica,English Series, 2012, (06) : 1237 - 1248
  • [40] The Boundedness of Calderón-Zygmund Operators by Wavelet Characterization
    ChengCong HUNG
    MingYi LEE
    Acta Mathematica Sinica, 2012, 28 (06) : 1237 - 1248