The partition function of an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {N}=2}$$\end{document} gauge theory in the Ω-background satisfies, for generic value of the parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\beta=-{\epsilon_1}/{\epsilon_2}}$$\end{document} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity together with the (β-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to β = 2, can be identified with an “orientifold” of the theory at β = 1. The various connections give hints for embedding the structure into the topological string.