Independently parameterised momenta variables and Monte Carlo IR subtraction

被引:0
|
作者
Peter Cox
Tom Melia
机构
[1] University of Tokyo,Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study
关键词
NLO Computations; QCD Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a system of parameters for the Monte Carlo generation of Lorentz invariant phase space that is particularly well-suited to the treatment of the infrared divergences that occur in the most singular, Born-like configurations of 1 → n QCD processes. A key feature is that particle momenta are generated independently of one another, leading to a simple parameterisation of all such IR limits. We exemplify the use of these variables in conjunction with the projection to Born subtraction technique at next-to-next-to-leading order. The geometric origins of this parameterisation lie in a coordinate chart on a Grassmannian manifold.
引用
收藏
相关论文
共 50 条
  • [21] Imprecise random variables, random sets, and Monte Carlo simulation
    Fetz, Thomas
    Oberguggenberger, Michael
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 78 : 252 - 264
  • [22] MONTE-CARLO TECHNIQUE WITH CORRELATED RANDOM-VARIABLES
    TOURAN, A
    WISER, EP
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT-ASCE, 1992, 118 (02): : 258 - 272
  • [23] Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables
    Zhou, Guangyao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [24] Testing dependent correlations with nonoverlapping variables: A Monte Carlo simulation
    Silver, NC
    Hittner, JB
    May, K
    JOURNAL OF EXPERIMENTAL EDUCATION, 2004, 73 (01): : 53 - 69
  • [25] The effects of exogenous variables in efficiency measurement - A Monte Carlo study
    Yu, CY
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 105 (03) : 569 - 580
  • [26] Monte Carlo estimation of the density of the sum of dependent random variables
    Laub, Patrick J.
    Salomone, Robert
    Botev, Zdravko I.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 161 : 23 - 31
  • [27] A MONTE-CARLO APPROACH TO CORRELATIONAL SPURIOUSNESS AND RATIO VARIABLES
    PENDLETON, BF
    NEWMAN, I
    MARSHALL, RS
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (2-3) : 93 - 124
  • [28] Imprecise random variables, random sets, and Monte Carlo simulation
    Fetz, Thomas
    Oberguggenberger, Michael
    International Journal of Approximate Reasoning, 2016, 78 : 252 - 264
  • [29] Experimental and Monte Carlo endovascular dosimetry of a 192Ir source
    Piermattei, A
    Fidanzio, A
    Azario, L
    Russo, A
    Perrone, F
    Toni, MP
    Capote, R
    PHYSICA MEDICA, 2003, 19 (02) : 111 - 118
  • [30] PyMCGPU-IR Monte Carlo code test for occupational dosimetry
    Balcaza, Victor Garcia
    Bosman, David Fernandez
    Badal, Andreu
    Von Barnekow, Ariel
    O'Connor, Una
    Camp, Anna
    Lopez, Joan Aranda
    Ginjaume, Merce
    Duch, Maria Amor
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (8-9) : 730 - 735