Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign

被引:0
|
作者
Hang Xu
Na Zhu
Yong Yue
Yan Guo
Qingyun Wen
Lu Gao
Yang Hou
Jin Shang
机构
[1] Shengjing Hospital of China Medical University,Department of Radiology
[2] Nanfang Hospital of Southern Medical University,Department of Radiation Oncology
[3] GE Healthcare,Department of Radiology
[4] Jining First People’s Hospital,Department of Radiology
[5] Liaoning Province Cancer Hospital,undefined
来源
BMC Cancer | / 23卷
关键词
Solitary pulmonary solid nodules; Discrimination; Dual-layer spectral detector CT; Radiomics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors
    Yu, Qiang
    Wang, Anran
    Gu, Jinming
    Li, Quanjiang
    Ning, Youquan
    Peng, Juan
    Lv, Fajin
    Zhang, Xiaodi
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [22] Classification of Benign and Malignant Pulmonary Nodules Based on Radiomics and Random Forests Algorithm
    Li X.
    Li B.
    Tian L.
    Zhu W.
    Zhang L.
    Li, Bin (binlee@scut.edu.cn), 2018, South China University of Technology (46): : 72 - 80
  • [23] Evaluation of Radiomics Models Based on Computed Tomography for Distinguishing Between Benign and Malignant Thyroid Nodules
    Kong, Dan
    Zhang, Jiandong
    Shan, Wenli
    Duan, Shaofeng
    Guo, Lili
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2022, 46 (06) : 978 - 985
  • [24] Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules
    Jianing Liu
    Linlin Qi
    Yawen Wang
    Fenglan Li
    Jiaqi Chen
    Shulei Cui
    Sainan Cheng
    Zhen Zhou
    Lin Li
    Jianwei Wang
    European Radiology Experimental, 8
  • [25] Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules
    Liu, Jianing
    Qi, Linlin
    Wang, Yawen
    Li, Fenglan
    Chen, Jiaqi
    Cui, Shulei
    Cheng, Sainan
    Zhou, Zhen
    Li, Lin
    Wang, Jianwei
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [26] CT radiomics based model for differentiating malignant and benign small (≤20mm) solid pulmonary nodules
    Sun, Jing-Xi
    Zhou, Xuan-Xuan
    Yu, Yan-Jin
    Wei, Ya-Ming
    Shi, Yi-Bing
    Xu, Qing-Song
    Chen, Shuang-Shuang
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [27] Establishment and verification of a prediction model based on clinical characteristics and computed tomography radiomics parameters for distinguishing benign and malignant pulmonary nodules
    Hou, Xiaohui
    Wu, Meng
    Chen, Jingjing
    Zhang, Rui
    Wang, Yan
    Zhang, Shuwen
    Yuan, Zaixin
    Feng, Jian
    Xu, Liqin
    JOURNAL OF THORACIC DISEASE, 2024, 16 (03) : 1984 - 1995
  • [28] Value of CT-Based Deep Learning Model in Differentiating Benign and Malignant Solid Pulmonary Nodules ≤ 8 mm
    Li, Yuan
    Huang, Xing-Tao
    Feng, Yi-Bo
    Fan, Qian-Rui
    Wang, Da-Wei
    Lv, Fa-Jin
    He, Xiao-Qun
    Li, Qi
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 5250 - 5260
  • [29] A nomogram combining CT-based radiomic features with clinical features for the differentiation of benign and malignant cystic pulmonary nodules
    Yao, Yi
    Yang, Yanhui
    Hu, Qiuxia
    Xie, Xiaoyang
    Jiang, Wenjian
    Liu, Caiyang
    Li, Xiaoliang
    Wang, Yi
    Luo, Lei
    Li, Ji
    JOURNAL OF CARDIOTHORACIC SURGERY, 2024, 19 (01)
  • [30] PET/CT radiomics and deep learning in the diagnosis of benign and malignant pulmonary nodules: progress and challenges
    Sun, Yan
    Ge, Xinyu
    Niu, Rong
    Gao, Jianxiong
    Shi, Yunmei
    Shao, Xiaoliang
    Wang, Yuetao
    Shao, Xiaonan
    FRONTIERS IN ONCOLOGY, 2024, 14