Optimisation of Measures on a Hyperfinite Adapted Probability Space

被引:0
|
作者
Sergio Albeverio
Frederik S. Herzberg
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] Universität Bielefeld,Institut für Mathematische Wirtschaftsforschung
来源
关键词
Optimisation in measure spaces; Loeb measures; Nonstandard analysis; 28E05; 49J55; 03H05; 28A33; 91B24;
D O I
暂无
中图分类号
学科分类号
摘要
The minimisation problem for a functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P\mapsto u(\Gamma ,P,\tilde{g})$\end{document} is considered, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{g}$\end{document} is an ℝn-valued stochastic process, defined on some filtered probability space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma=(\Gamma,({\mathcal{G}}_{t})_{t\in[0,1]},\mathbb{P})$\end{document} , and P is an admissible probability measure in the sense that it obeys (1) some uniform equivalence condition with respect to the given measure ℙ on Γ, and (2) a finite number (possibly zero) of arbitrarily given other conditions that require the expectation (with respect to P) of some continuous bounded function φ of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\tilde{g}_{t_{1}},\ldots,\tilde{g}_{t_{k}})$\end{document} , for t1,…,tk∈[0,1], to lie within some closed set. We assume that u can be formulated through finite compositions of conditional expectations and bounded continuous functions.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [21] Geodesics for a class of distances in the space of probability measures
    P. Cardaliaguet
    G. Carlier
    B. Nazaret
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 395 - 420
  • [22] Dynamics of Induced Maps on the Space of Probability Measures
    Hua Shao
    Hao Zhu
    Guanrong Chen
    Journal of Dynamics and Differential Equations, 2022, 34 : 961 - 981
  • [23] Geometrical properties of the space of idempotent probability measures
    Kholturayev, Kholsaid Fayzullayevich
    APPLIED GENERAL TOPOLOGY, 2021, 22 (02): : 399 - 415
  • [24] Hilbert Space Embeddings and Metrics on Probability Measures
    Sriperumbudur, Bharath K.
    Gretton, Arthur
    Fukumizu, Kenji
    Schoelkopf, Bernhard
    Lanckriet, Gert R. G.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1517 - 1561
  • [25] Some Topological Properties of the Space of Probability Measures
    T. K. Yuldashev
    F. G. Mukhamadiev
    Lobachevskii Journal of Mathematics, 2022, 43 : 3310 - 3314
  • [26] Hamiltonian ODEs in the wasserstein space of probability measures
    Ambrosio, Luigi
    Gangbo, Wilfred
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) : 18 - 53
  • [27] PROBABILITY MEASURES ON FUZZY EVENTS IN PHASE SPACE
    PRUGOVECKI, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) : 517 - 523
  • [28] Dugundji Compacta and the Space of Idempotent Probability Measures
    A. A. Zaitov
    D. T. Eshkobilova
    Mathematical Notes, 2023, 114 : 433 - 442
  • [29] EXTREME FUNCTIONALS IN THE SPACE OF PROBABILITY-MEASURES
    RACHEV, ST
    LECTURE NOTES IN MATHEMATICS, 1985, 1155 : 320 - 348
  • [30] Dugundji Compacta and the Space of Idempotent Probability Measures
    Zaitov, A. A.
    Eshkobilova, D. T.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 433 - 442