The minimisation problem for a functional
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P\mapsto u(\Gamma ,P,\tilde{g})$\end{document}
is considered, where
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{g}$\end{document}
is an ℝn-valued stochastic process, defined on some filtered probability space
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Gamma=(\Gamma,({\mathcal{G}}_{t})_{t\in[0,1]},\mathbb{P})$\end{document}
, and P is an admissible probability measure in the sense that it obeys (1) some uniform equivalence condition with respect to the given measure ℙ on Γ, and (2) a finite number (possibly zero) of arbitrarily given other conditions that require the expectation (with respect to P) of some continuous bounded function φ of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\tilde{g}_{t_{1}},\ldots,\tilde{g}_{t_{k}})$\end{document}
, for t1,…,tk∈[0,1], to lie within some closed set. We assume that u can be formulated through finite compositions of conditional expectations and bounded continuous functions.