Symmetries of hyperbolic spatial graphs and realization of graph symmetries

被引:0
|
作者
Toru Ikeda
机构
[1] Kindai University,Department of Mathematics
来源
Journal of Geometry | 2024年 / 115卷
关键词
3-manifold; symmetry; hyperbolic structure; spatial graph; 57M15; 57M60; 55M35; 57M25;
D O I
暂无
中图分类号
学科分类号
摘要
In a closed connected orientable 3-manifold associated with an orientation-preserving smooth finite group action, we construct setwise invariant hyperbolic spatial graphs with given singularity. As an application, we provide a condition under which symmetries of abstract graphs are realizable by symmetries of the 3-sphere through hyperbolic spatial embeddings.
引用
收藏
相关论文
共 50 条
  • [31] PHYSICAL REALIZATION OF NONCOMPACT DYNAMICAL SYMMETRIES
    KATRIEL, J
    ADAM, G
    PHYSICAL REVIEW LETTERS, 1969, 23 (22) : 1310 - &
  • [32] NONLINEAR REALIZATION OF CHIRAL SYMMETRIES AND LOCALIZABILITY
    FLUME, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (02) : 165 - 170
  • [33] NONLINEAR REALIZATION AND HIDDEN LOCAL SYMMETRIES
    BANDO, M
    KUGO, T
    YAMAWAKI, K
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 164 (4-5): : 217 - 314
  • [34] Symmetries of Hyperbolic 4-Manifolds
    Kolpakov, Alexander
    Slavich, Leone
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (09) : 2677 - 2716
  • [35] Vector hyperbolic equations with higher symmetries
    Meshkov, A. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 161 (02) : 1471 - 1484
  • [36] MIRROR SYMMETRIES OF HYPERBOLIC TETRAHEDRAL MANIFOLDS
    Derevnin, Dmitry Alexandrovich
    Mednykh, Alexandr Dmitrievich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1850 - 1856
  • [37] Symmetries of Systems of the Hyperbolic Riccati Type
    A. A. Bormisov
    F. Kh. Mukminov
    Theoretical and Mathematical Physics, 2001, 127 : 446 - 459
  • [38] Vector hyperbolic equations with higher symmetries
    A. G. Meshkov
    Theoretical and Mathematical Physics, 2009, 161 : 1471 - 1484
  • [39] ISOSPECTRAL GRAPHS VIA INNER SYMMETRIES
    Kurasov, P.
    Muller, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (02) : 287 - 309
  • [40] Breaking Symmetries in Graphs: The Nauty Way
    Codish, Michael
    Gange, Graeme
    Itzhakov, Avraham
    Stuckey, Peter J.
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 157 - 172