A Fiber Bundle over the Quaternionic Slice Regular Functions

被引:0
|
作者
J. Oscar González-Cervantes
机构
[1] E.S.F.M. del I.P.N.,Departamento de Matemáticas
来源
关键词
Quaternionic slice regular functions; Fiber bundles; Primary 30G35; Secondary 46M20;
D O I
暂无
中图分类号
学科分类号
摘要
Several topological methods have been used successfully in the study of the hypercomplex analysis; for example, in the theory of functions of several complex variables (Grauert et al., in: Encyclopaedia of mathematical science, vol. 74, Springer, 1991, Hirzebruch, in: Topological methods in algebraic geometry, Classics in Mathematics. Reprint of the 1978 Edition. Springer, Berlin, 1995, Krantz, in Function theory of several complex variables, 2nd edn. American Mathematical Society, Providence, 2001), in the Clifford analysis (Sabadini et al. in Adv. Appl. Clifford Algebras 24:1131–1143, 2014), and in the theory of slice regular functions (Colombo et al. in Math Nachr 285:949–958, 2012). Particularly, the fiber bundle is one of these topological subjects that had an intensive development in a number of papers (Bernstein and Philips in Sci Am 245(1):122–137, 1981, Bleecker, in: Guage Theory and Variational Principles. Dover Books on physics Dover Books on mathematics. Courier Corporation, North Chelmsford, 2005, Bredon in Topology and geometry, Springer, Berlin, 1913, Cohen in The topology of fiber bundles, Stanford University, Stanford, 1998, Hatcher in Algebraic-Topology, Cambridge University Press, Cambridge, 2002, Husemoller in fibre bundles, 3rd edn, Springer, Berlin, 1993, Steenrod in The topology of fibre bundles, Princeton University Press, Princeton, 1951, Walschap in Metric structures in differential geometry, Springer, New York, 2004, Weatherall in Synthese 193:2389–2425, 2016). The aim of this work is to show how the Splitting Lemma and the Representation Formula intrinsically determine a fiber bundle over the space of quaternionic slice regular functions and as a consequence, several properties of this function space are interpreted in terms of sections, pullbacks and isomorphism of fiber bundles.
引用
收藏
相关论文
共 50 条
  • [41] A representation formula for slice regular functions over slice-cones in several variables
    Xinyuan Dou
    Guangbin Ren
    Irene Sabadini
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2421 - 2446
  • [42] REGULAR FUNCTIONS OF SEVERAL QUATERNIONIC VARIABLES
    PERTICI, D
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 151 : 39 - 65
  • [43] The orthogonal projection on slice functions on the quaternionic sphere
    Arcozzi, Nicola
    Sarfatti, Giulia
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [44] Ideals of regular functions of a quaternionic variable
    Gentili, Graziano
    Sarfatti, Giulia
    Struppa, Daniele C.
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (06) : 1645 - 1663
  • [45] REGULAR FUNCTIONS OF COMPLEX QUATERNIONIC VARIABLE
    MESKA, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1984, 34 (01) : 130 - 145
  • [46] Quaternionic Fock Space on Slice Hyperholomorphic Functions
    Kumar, Sanjay
    Sharma, S. D.
    Manzoor, Khalid
    FILOMAT, 2020, 34 (04) : 1197 - 1207
  • [47] Correction to: On Slice Polyanalytic Functions of a Quaternionic Variable
    Daniel Alpay
    Kamal Diki
    Irene Sabadini
    Results in Mathematics, 2021, 76
  • [48] Slice Regular Malmquist–Takenaka System in the Quaternionic Hardy Spaces
    M. Pap
    Analysis Mathematica, 2018, 44 : 99 - 114
  • [49] Sheaves of slice regular functions
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 949 - 958
  • [50] The Harmonicity of Slice Regular Functions
    Bisi, Cinzia
    Winkelmann, Joerg
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 7773 - 7811