Let M be a non-compact homogeneous Riemannian manifold, and let Ω be a compact subgroup of isometries of M. We show, under general conditions, that the Ω-invariant subspace AΩ of a normed vector space A↪Lq(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A\hookrightarrow L^q(M)}$$\end{document} is compactly embedded into Lq(M) if and only if the group Ω has no orbits with a uniformly bounded diameter in a neighborhood of infinity.