A geometric criterion for compactness of invariant subspaces

被引:0
|
作者
Leszek Skrzypczak
Cyril Tintarev
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[2] Uppsala University,undefined
来源
Archiv der Mathematik | 2013年 / 101卷
关键词
Primary 46B50; Secondary 46E35; 46N20; Convergence; Compactness; Concentration;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a non-compact homogeneous Riemannian manifold, and let Ω be a compact subgroup of isometries of M. We show, under general conditions, that the Ω-invariant subspace AΩ of a normed vector space A↪Lq(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\hookrightarrow L^q(M)}$$\end{document} is compactly embedded into Lq(M) if and only if the group Ω has no orbits with a uniformly bounded diameter in a neighborhood of infinity.
引用
收藏
页码:259 / 268
页数:9
相关论文
共 50 条