Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information

被引:0
|
作者
Mahmoud Mahmoudi
Mousa Shamsi
机构
[1] Sahand University of Technology,Faculty of Biomedical Engineering
关键词
Brain–computer interface; Electroencephalogram; Signal to noise ratio; Mutual information; One-Vs-One scheme;
D O I
暂无
中图分类号
学科分类号
摘要
The electroencephalogram signals are used to distinguish different motor imagery tasks in brain–computer interfaces. In most studies, in order to classify the EEG signals recorded in a cue-guided BCI paradigm, time segments for feature extraction after the onset of the visual cue were selected manually. In addition, in these studies the authors have selected a single identical time segment for different subjects. The present study emphasized on the inter-individual variability and difference between different motor imagery tasks as the potential source of erroneous results and used mutual information and the subject specific time interval to overcome this problem. More specifically, a new method was proposed to automatically find the best subject specific time intervals for the classification of four-class motor imagery tasks by using MI between the BCI input and output. Moreover, the signal-to-noise ratio was used to calculate the MI values, while the MI values were used as feature selection criteria to select the discriminative features. The time segments and the best discriminative features were found by using training data and used to assess the evaluation data. Furthermore, the CSP algorithm was used to extract signal features. The dataset 2A of BCI competition IV used in this study consisted of four different motor imagery signals, which were obtained from nine different subjects. One Vs One decomposition scheme was used to deal with the multi-class nature of the problem. The MI values showed that the obtained time segments not only varied between different subjects but also varied between different classifiers of different pair of classes. Finally, the results suggested that the proposed method was efficient in classifying multi-class motor imagery signals as compared to other classification strategies proposed by the other studies.
引用
收藏
页码:957 / 972
页数:15
相关论文
共 50 条
  • [21] Finding Discriminative Subsequences Via a Coverage Measure and Mutual Information Selection Strategy for Multi-Class Time Series Classification
    Yang, Jun
    Jing, Siyuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [22] Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine
    She, Qingshan
    Zou, Jie
    Luo, Zhizeng
    Thinh Nguyen
    Li, Rihui
    Zhang, Yingchun
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (09) : 2119 - 2130
  • [23] Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine
    Qingshan She
    Jie Zou
    Zhizeng Luo
    Thinh Nguyen
    Rihui Li
    Yingchun Zhang
    Medical & Biological Engineering & Computing, 2020, 58 : 2119 - 2130
  • [24] EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine
    Gao, Lin
    Cheng, Wei
    Zhang, Jinhua
    Wang, Jue
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (08):
  • [25] A novel EEG channel selection and classification methodology for multi-class motor imagery-based BCI system design
    Jindal, Komal
    Upadhyay, Rahul
    Singh, Hari Shankar
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1318 - 1337
  • [26] Classification of EEG Motor imagery multi class signals based on Cross Correlation
    Krishna, D. Hari
    Pasha, I. A.
    Savithri, T. Satya
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELLING AND SECURITY (CMS 2016), 2016, 85 : 490 - 495
  • [27] Two Class Motor Imagery EEG Signal Classification for BCI Using LDA and SVM
    Kanagaluru, Venkatesh
    Sasikala, M.
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2743 - 2749
  • [28] Motor Imagery EEG Signal Classification Scheme Based on Wavelet Domain Statistical Features
    Imran, S. M.
    Talukdar, M. T. F.
    Sakib, S. K.
    Pathan, N. S.
    Fattah, S. A.
    2014 1ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION & COMMUNICATION TECHNOLOGY (ICEEICT 2014), 2014,
  • [29] A novel method for classification of multi-class motor imagery tasks based on feature fusion
    Hou, Yimin
    Chen, Tao
    Lun, Xiangmin
    Wang, Fang
    NEUROSCIENCE RESEARCH, 2022, 176 : 40 - 48
  • [30] EEG-Based Multi-Class Motor Imagery Classification Using Variable Sized Filter Bank and Enhanced One Versus One Classifier
    Sharbaf, Mohammadreza Edalati
    Fallah, Ali
    Rashidi, Saeid
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 135 - 140