Ulrich bundles on a general blow-up of the plane

被引:0
|
作者
Ciro Ciliberto
Flaminio Flamini
Andreas Leopold Knutsen
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] University of Bergen,Department of Mathematics
关键词
Ulrich vector bundles; Stability; Moduli spaces; Primary 14J60; Secondary 14C20; 14D06; 14D20; 14H50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, the plane blown-up at n very general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown-up points, with m⩽2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\leqslant 2\sqrt{n}$$\end{document} and such that the line bundle in question is very ample on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope-stable rank-r Ulrich vector bundles on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, for n⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 2$$\end{document} and any r⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \geqslant 1$$\end{document} and we compute the dimensions of their moduli spaces. These computations imply that Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} is Ulrich wild.
引用
收藏
页码:1835 / 1854
页数:19
相关论文
共 50 条