Ulrich bundles on a general blow-up of the plane

被引:0
|
作者
Ciro Ciliberto
Flaminio Flamini
Andreas Leopold Knutsen
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] University of Bergen,Department of Mathematics
关键词
Ulrich vector bundles; Stability; Moduli spaces; Primary 14J60; Secondary 14C20; 14D06; 14D20; 14H50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, the plane blown-up at n very general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown-up points, with m⩽2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\leqslant 2\sqrt{n}$$\end{document} and such that the line bundle in question is very ample on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope-stable rank-r Ulrich vector bundles on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, for n⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 2$$\end{document} and any r⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \geqslant 1$$\end{document} and we compute the dimensions of their moduli spaces. These computations imply that Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} is Ulrich wild.
引用
收藏
页码:1835 / 1854
页数:19
相关论文
共 50 条
  • [1] Ulrich bundles on a general blow-up of the plane
    Ciliberto, Ciro
    Flamini, Flaminio
    Knutsen, Andreas Leopold
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1835 - 1854
  • [2] DIVISORS ON THE BLOW-UP OF THE PROJECTIVE PLANE
    XU, G
    MANUSCRIPTA MATHEMATICA, 1995, 86 (02) : 195 - 197
  • [3] Plane and linear blow-up and source
    Khabirov, S. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [4] On the blow-up for a discrete Boltzmann equation in the plane
    Bressan, A
    Fonte, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (01) : 1 - 12
  • [5] Rank 2 Ulrich bundles on general double plane covers
    Sebastian, Ronnie
    Tripathi, Amit
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (02)
  • [6] Rank two bundles on the blow-up of C2
    Gasparim, E
    JOURNAL OF ALGEBRA, 1998, 199 (02) : 581 - 590
  • [7] The general blow-up for nonlinear PDE's
    Pohozaev, S
    FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 141 - 159
  • [8] To blow-up or not to blow-up for a granular kinetic equation
    Carrillo, Jose A.
    Shu, Ruiwen
    Wang, Li
    Xu, Wuzhe
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [9] Symmetries, periodic plane waves and blow-up of λ-ω systems
    Romero, JL
    Gandarias, ML
    Medina, E
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (3-4) : 259 - 272
  • [10] Blow-Up
    Fruhauf, Siegfried A.
    SHORT FILM STUDIES, 2020, 10 (01) : 91 - 93