Microbial carbon use efficiency of litter with distinct C/N ratios in soil at different temperatures, including microbial necromass as growth component

被引:0
|
作者
Marie Börger
Tabata Bublitz
Jens Dyckmans
Christine Wachendorf
Rainer Georg Joergensen
机构
[1] University of Kassel,Soil Biology and Plant Nutrition
[2] University of Göttingen,Centre for Stable Isotope Research Analysis
来源
关键词
Microbial biomass;  N/;  N ratio; C/; C ratio; CO; mineralization; Particulate organic matter; Microbial necromass;
D O I
暂无
中图分类号
学科分类号
摘要
An incubation study was carried out to investigate the effects of litter quality, i.e. 15 N-labelled maize (C/N of 25.5) and Rhodes grass (C/N of 57.8) leaf litter on microbial carbon use efficiency (CUE) and priming effects in a moderate alkaline soil at two different temperatures (15 and 25 °C). CUE values were calculated from the isotopic composition of the particulate organic matter (POM) recovered as an index for the amount of non-decomposed litter. This approach allows the inclusion of microbial necromass growth components in the calculation of CUE values. Additionally, the soil was incubated for 10, 20, and 30 days to determine the optimum incubation period. Soil microbial CUE values of maize and Rhodes grass leaf litter, including microbial necromass C in the calculation of CUE, varied around 0.61, regardless of litter type, temperature, and incubation period. However, the optimum incubation time is between 20 and 30 days, depending on temperature. The strong priming effect on autochthonous soil organic carbon (SOC) mineralization was apparently not caused by N mining, as it was similar for both litter qualities. It most likely resulted from SOC being used by microbial co-metabolism. The litter-induced true priming effect was accompanied by a significant increase in autochthonous POM. The current approach, including microbial necromass as growth component, has been shown to be a strong tool for investigating CUE values and priming effects after application of litter and harvest residues to soil, probably under all environmental conditions.
引用
收藏
页码:761 / 770
页数:9
相关论文
共 50 条
  • [31] Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils
    Schnecker, Jorg
    Baldaszti, Ludwig
    Guendler, Philipp
    Pleitner, Michaela
    Sanden, Taru
    Simon, Eva
    Spiegel, Felix
    Spiegel, Heide
    Malo, Carolina Urbina
    Zechmeister-Boltenstern, Sophie
    Richter, Andreas
    GEODERMA, 2023, 440
  • [32] Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus
    Heuck, Christine
    Weig, Alfons
    Spohn, Marie
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 85 : 119 - 129
  • [33] Dilemmas in Linking Microbial Carbon Use Efficiency With Soil Organic Carbon Dynamics
    Zhou, Jiacong
    Luo, Yiqi
    Chen, Ji
    GLOBAL CHANGE BIOLOGY, 2025, 31 (02)
  • [34] Effects of different litter treatments on soil microbial biomass carbon and nitrogen in temperate grassland
    Ba, Zhidan
    Geer, Teni
    Du, Huishi
    Zhao, Huanhuan
    Bao, Han
    Journal of Biotech Research, 2022, 13 : 260 - 268
  • [35] Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency
    Iven, Helene
    Walker, Tom W. N.
    Anthony, Mark
    CURRENT MICROBIOLOGY, 2023, 80 (01)
  • [36] Biotic and abiotic factors affecting soil microbial carbon use efficiency
    Tang, Xinyu
    Li, Zhenxin
    Yuan, Jihong
    Yu, Weirui
    Luo, Wenbo
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [37] Responses of soil microbial carbon use efficiency to warming: Review and prospects
    Qiufang Zhang
    Wenkuan Qin
    Jiguang Feng
    Biao Zhu
    Soil Ecology Letters, 2022, (04) : 307 - 318
  • [38] Responses of soil microbial carbon use efficiency to warming: Review and prospects
    Qiufang Zhang
    Wenkuan Qin
    Jiguang Feng
    Biao Zhu
    Soil Ecology Letters, 2022, 4 : 307 - 318
  • [39] Responses of soil microbial carbon use efficiency to warming: Review and prospects
    Zhang, Qiufang
    Qin, Wenkuan
    Feng, Jiguang
    Zhu, Biao
    SOIL ECOLOGY LETTERS, 2022, 4 (04) : 307 - 318
  • [40] Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency
    Hélène Iven
    Tom W. N. Walker
    Mark Anthony
    Current Microbiology, 2023, 80