A Low Cost Semi-implicit Low-Mach Relaxation Scheme for the Full Euler Equations

被引:0
|
作者
François Bouchut
Emmanuel Franck
Laurent Navoret
机构
[1] Univ. Gustave Eiffel,Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), CNRS
[2] UPEC,undefined
[3] INRIA Grand-Est,undefined
[4] IRMA,undefined
[5] CNRS,undefined
[6] Université de Strasbourg,undefined
来源
关键词
Compressible Euler equations; Low Mach flows; Semi-implicit methods; Two-speed relaxation; Dynamical splitting; Low cost solvers; Large timestep; 76M12; 76M45;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a semi-implicit two-speed relaxation scheme to solve the compressible Euler equations in the low Mach regime. The scheme involves a relaxation system with two speeds, already introduced by Bouchut et al. (Numer Math, 2020. https://doi.org/10.1007/s00211-020-01111-5) in the barotropic case. It is entropy satisfying and has a numerical viscosity well-adapted to low Mach flows. This relaxation system is solved via a dynamical Mach number dependent splitting, similar to the one proposed by Iampietro et al. (J Comput Appl Math 340:122–150, 2018). Stability conditions are derived, they limit the range of admissible relaxation and splitting parameters. We resolve separately the advection part of the splitting by an explicit method, and the acoustic part by an implicit method. The relaxation speeds are chosen so that the implicit system fully linearizes the acoustics and requires just to invert an elliptic operator with constant coefficients. The scheme is shown to well capture with low cost the incompressible slow scale dynamics with a timestep adapted to the velocity field scale, and rather well the fast acoustic waves.
引用
收藏
相关论文
共 50 条
  • [1] A Low Cost Semi-implicit Low-Mach Relaxation Scheme for the Full Euler Equations
    Bouchut, Francois
    Franck, Emmanuel
    Navoret, Laurent
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [2] LOW-MACH CONSISTENCY OF A CLASS OF LINEARLY IMPLICIT SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS
    Kucera, Vaclav
    Lukacova-Medvidova, Maria
    Noelle, Sebastian
    Schuetz, Jochen
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20, 2021, : 69 - 78
  • [3] All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
    Boscarino, S.
    Russo, G.
    Scandurra, L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 850 - 884
  • [4] All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
    S. Boscarino
    G. Russo
    L. Scandurra
    Journal of Scientific Computing, 2018, 77 : 850 - 884
  • [5] Semi-implicit Euler-Maruyama scheme for stiff stochastic equations
    Hu, YZ
    STOCHASTIC ANALYSIS AND RELATED TOPICS V: THE SILIVRI WORKSHOP, 1994, 1996, 38 : 183 - 202
  • [6] A hybrid adaptive low-Mach number/compressible method: Euler equations
    Motheau, Emmanuel
    Duarte, Max
    Almgren, Ann
    Bell, John B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 1027 - 1047
  • [7] High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers
    Jiang, Yan-Qun
    Zhou, Shu-Guang
    Hu, Ying-Gang
    Zhang, Xu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 : 125 - 139
  • [8] An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
    Li, Chung-Gang
    Tsubokura, Makoto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 462 - 474
  • [9] A LOW MACH TWO-SPEED RELAXATION SCHEME FOR THE COMPRESSIBLE EULER EQUATIONS WITH GRAVITY
    Birke, Claudius
    Chalons, Christophe
    Klingenberg, Christian
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (08) : 2213 - 2246
  • [10] Semi-implicit Euler scheme for generalized Newtonian fluids
    Diening, Lars
    Prohl, Andreas
    Ruzicka, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) : 1172 - 1190