LOW-MACH CONSISTENCY OF A CLASS OF LINEARLY IMPLICIT SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS

被引:0
|
作者
Kucera, Vaclav [1 ]
Lukacova-Medvidova, Maria [2 ]
Noelle, Sebastian [3 ]
Schuetz, Jochen [4 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
[2] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
[3] Rhein Westfal TH Aachen, Inst Geometr & Prakt Math, Templergraben 55, D-52056 Aachen, Germany
[4] Univ Hasselt, Vakgrp Wiskunde Statistiek, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
关键词
asymptotic preserving schemes; compressible Euler equations; low-Mach limit; Hilbert expansion;
D O I
10.21136/panm.2020.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we give an overview of the authors' paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kucera [3] as well as the class of RS-IMEX schemes [8, 5, 1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of a discrete Hilbert expansion. The existence of the Hilbert expansion is shown under simplifying assumptions.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条
  • [1] Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
    Václav Kučera
    Mária Lukáčová-Medvid’ová
    Sebastian Noelle
    Jochen Schütz
    Numerische Mathematik, 2022, 150 : 79 - 103
  • [2] Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
    Kucera, Vaclav
    Lukacova-Medvid'ova, Maria
    Noelle, Sebastian
    Schuetz, Jochen
    NUMERISCHE MATHEMATIK, 2022, 150 (01) : 79 - 103
  • [3] A hybrid adaptive low-Mach number/compressible method: Euler equations
    Motheau, Emmanuel
    Duarte, Max
    Almgren, Ann
    Bell, John B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 1027 - 1047
  • [4] A Low Cost Semi-implicit Low-Mach Relaxation Scheme for the Full Euler Equations
    Bouchut, Francois
    Franck, Emmanuel
    Navoret, Laurent
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [5] A Low Cost Semi-implicit Low-Mach Relaxation Scheme for the Full Euler Equations
    François Bouchut
    Emmanuel Franck
    Laurent Navoret
    Journal of Scientific Computing, 2020, 83
  • [6] Improvements to compressible Euler methods for low-Mach number flows
    Sabanca, M
    Brenner, G
    Alemdaroglu, N
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (02) : 167 - 185
  • [8] Linearly implicit peer methods for the compressible Euler equations
    Jebens, Stefan
    Knoth, Oswald
    Weiner, Ruediger
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1380 - 1392
  • [9] A Class of Staggered Schemes for the Compressible Euler Equations
    Herbin, Raphaele
    Latche, Jean-Claude
    NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 15 - 26
  • [10] Implicit finite element schemes for the stationary compressible Euler equations
    Gurris, Marcel
    Kuzmin, Dmitri
    Turek, Stefan
    International Journal for Numerical Methods in Fluids, 2012, 69 (01): : 1 - 28