A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors

被引:0
|
作者
J. D. Gard
D. T. Becker
D. A. Bennett
J. W. Fowler
G. C. Hilton
J. A. B. Mates
C. D. Reintsema
D. R. Schmidt
D. S. Swetz
J. N. Ullom
机构
[1] University of Colorado,Department of Physics
[2] Quantum Sensors Group,undefined
[3] National Institute of Standards and Technology,undefined
来源
关键词
Transition-edge sensors; Firmware; Multiplexing;
D O I
暂无
中图分类号
学科分类号
摘要
The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.
引用
收藏
页码:485 / 497
页数:12
相关论文
共 50 条
  • [31] Microwave SQUID Multiplexer for Readout of Optical Transition Edge Sensor Array
    Nakada, N.
    Hattori, K.
    Nakashima, Y.
    Hirayama, F.
    Yamamoto, R.
    Yamamori, H.
    Kohjiro, S.
    Sato, A.
    Takahashi, H.
    Fukuda, D.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 206 - 211
  • [32] Microwave SQUID Multiplexer for Readout of Optical Transition Edge Sensor Array
    N. Nakada
    K. Hattori
    Y. Nakashima
    F. Hirayama
    R. Yamamoto
    H. Yamamori
    S. Kohjiro
    A. Sato
    H. Takahashi
    D. Fukuda
    Journal of Low Temperature Physics, 2020, 199 : 206 - 211
  • [33] Frequency division multiplexing readout of 60 low-noise transition-edge sensor bolometers
    Wang, Q.
    Khosropanah, P.
    van der Kuur, J.
    de Lange, G.
    Audley, M. D.
    Aminaei, A.
    Ridder, M. L.
    van der Linden, A. J.
    Bruijn, M. P.
    van der Tak, F.
    Gao, J. R.
    APPLIED PHYSICS LETTERS, 2021, 119 (18)
  • [34] Performance of NbSi Transition-Edge Sensors readout with a 128 MUX factor for the QUBIC experiment
    Salatino, M.
    Belier, B.
    Chapron, C.
    Hoang, D. T.
    Maestre, S.
    Marnieros, S.
    Marty, W.
    Montier, L.
    Piat, M.
    Prele, D.
    Rambaud, D.
    Stankowiak, G.
    Thermeau, J. P.
    Torchinsky, S. A.
    Henrot-Versille, S.
    Voisin, F.
    Ade, P.
    Amico, G.
    Auguste, D.
    Aumont, J.
    Banfi, S.
    Barbaran, G.
    Battaglia, P.
    Battistelli, E.
    Bau, A.
    Bennett, D.
    Berge, L.
    Bernard, J. -Ph.
    Bersanelli, M.
    Bigot-Sazy, M. -A.
    Bleurvacq, N.
    Bonaparte, J.
    Bonis, J.
    Bordier, G.
    Breelle, E.
    Bunn, E.
    Burke, D.
    Buzi, D.
    Buzzelli, A.
    Cavaliere, F.
    Chanial, P.
    Charlassier, R.
    Columbro, F.
    Coppi, G.
    Coppolecchia, A.
    Couchot, F.
    D'Agostino, R.
    D'Alessandro, G.
    de Bernardis, P.
    De Gasperis, G.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708
  • [35] Erratum to: Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
    W. B. Doriese
    K. M. Morgan
    D. A. Bennett
    E. V. Denison
    C. P. Fitzgerald
    J. W. Fowler
    J. D. Gard
    J. P. Hays-Wehle
    G. C. Hilton
    K. D. Irwin
    Y. I. Joe
    J. A. B. Mates
    G. C. O’Neil
    C. D. Reintsema
    N. O. Robbins
    D. R. Schmidt
    D. S. Swetz
    H. Tatsuno
    L. R. Vale
    J. N. Ullom
    Journal of Low Temperature Physics, 2016, 184 : 396 - 396
  • [36] On the physical origin of the superconducting transition in transition-edge sensors
    Fabrega, Lourdes
    Camon, Agustin
    Pobes, Carlos
    Strichovanec, Pavel
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (15)
  • [37] Magnetically Tuned Superconducting Transition-Edge Sensors
    Sadleir, John E.
    Smith, Stephen J.
    Bandler, Simon R.
    Adams, Joseph S.
    Busch, Sarah E.
    Eckart, Megan E.
    Chervenak, James A.
    Kelley, Richard L.
    Kilbourne, Caroline A.
    Porter, Frederick S.
    Porst, Jan-Patrick
    Clem, John R.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [38] Position-sensitive transition-edge sensors
    Iyomoto, N
    Bandler, SR
    Brekosky, RP
    Chervenak, JA
    Figueroa-Feliciano, E
    Finkbeiner, FM
    Kelley, RL
    Kilbourne, CA
    Lindeman, MA
    Murphy, K
    Porter, FS
    Saab, T
    Sadleir, JE
    Talley, DJ
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (02): : 491 - 493
  • [39] Superconducting transition-edge sensors in tomorrow physics
    Pepe, C.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2023, 46 (03):
  • [40] Electron spectroscopy using transition-edge sensors
    Patel, K. M.
    Withington, S.
    Shard, A. G.
    Goldie, D. J.
    Thomas, C. N.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (22)