Parameterizations of hitting set of bundles and inverse scope

被引:0
|
作者
Peter Damaschke
机构
[1] Chalmers University,Department of Computer Science and Engineering
来源
关键词
Hitting set; Parameterized complexity; W[i]-hardness; Chemical reaction network;
D O I
暂无
中图分类号
学科分类号
摘要
Hitting Set of Bundles generalizes the ordinary Hitting Set problem in the way that prescribed bundles of elements rather than single elements have to be put in a hitting set. The goal is to minimize the total number of distinct elements in the solution. First we prove that Hitting Set of Bundles, with the number of hyperedges and the solution size as parameter, is W[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W[1]$$\end{document}-complete. This contrasts to the to the corresponding parameterized Hitting Set version which is in FPT. Then we use this result to prove W[i]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W[i]$$\end{document}-hardness also for the Inverse Scope problem and some of its variants. This problem asks to identify small sets of chemical reactants being able to produce a given set of target compounds in a network of reactions. The problem has a graph-theoretic formulation as a reachability problem in directed graphs. On the positive side, we give an FPT algorithm where the parameter is the total number of compounds involved in the reactions.
引用
收藏
页码:847 / 858
页数:11
相关论文
共 50 条
  • [31] Learning the inverse map for a robot hitting task
    Osaka Univ, Osaka, Japan
    Adv Rob, 2 (197-212):
  • [32] HITTING TIME AND INVERSE PROBLEMS FOR MARKOV CHAINS
    De La Pena, Victor
    Gzyl, Henryk
    Mcdonald, Patrick
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 640 - 649
  • [33] Improved Results on Geometric Hitting Set Problems
    Mustafa, Nabil H.
    Ray, Saurabh
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 883 - 895
  • [34] Improved Local Search for Geometric Hitting Set
    Bus, Norbert
    Garg, Shashwat
    Mustafa, Nabil H.
    Ray, Saurabh
    32ND INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2015), 2015, 30 : 184 - 196
  • [35] Dynamic Kernels for Hitting Sets and Set Packing
    Max Bannach
    Zacharias Heinrich
    Rüdiger Reischuk
    Till Tantau
    Algorithmica, 2022, 84 : 3459 - 3488
  • [36] Parameterized algorithms for HITTING SET: The weighted case
    Fernau, Henning
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 332 - 343
  • [37] On Hitting All Maximum Cliques with an Independent Set
    Rabern, Landon
    JOURNAL OF GRAPH THEORY, 2011, 66 (01) : 32 - 37
  • [38] Parameterized algorithmics for d-Hitting Set
    Fernau, Henning
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (14) : 3157 - 3174
  • [39] Geometric Hitting Set for Segments of Few Orientations
    Sándor P. Fekete
    Kan Huang
    Joseph S. B. Mitchell
    Ojas Parekh
    Cynthia A. Phillips
    Theory of Computing Systems, 2018, 62 : 268 - 303
  • [40] Improved Results on Geometric Hitting Set Problems
    Nabil H. Mustafa
    Saurabh Ray
    Discrete & Computational Geometry, 2010, 44 : 883 - 895