Parameterizations of hitting set of bundles and inverse scope

被引:0
|
作者
Peter Damaschke
机构
[1] Chalmers University,Department of Computer Science and Engineering
来源
关键词
Hitting set; Parameterized complexity; W[i]-hardness; Chemical reaction network;
D O I
暂无
中图分类号
学科分类号
摘要
Hitting Set of Bundles generalizes the ordinary Hitting Set problem in the way that prescribed bundles of elements rather than single elements have to be put in a hitting set. The goal is to minimize the total number of distinct elements in the solution. First we prove that Hitting Set of Bundles, with the number of hyperedges and the solution size as parameter, is W[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W[1]$$\end{document}-complete. This contrasts to the to the corresponding parameterized Hitting Set version which is in FPT. Then we use this result to prove W[i]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W[i]$$\end{document}-hardness also for the Inverse Scope problem and some of its variants. This problem asks to identify small sets of chemical reactants being able to produce a given set of target compounds in a network of reactions. The problem has a graph-theoretic formulation as a reachability problem in directed graphs. On the positive side, we give an FPT algorithm where the parameter is the total number of compounds involved in the reactions.
引用
收藏
页码:847 / 858
页数:11
相关论文
共 50 条
  • [1] Parameterizations of hitting set of bundles and inverse scope
    Damaschke, Peter
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (04) : 847 - 858
  • [2] On the Minimum Hitting Set of Bundles problem
    Angel, Eric
    Bampis, Evripidis
    Gourves, Laurent
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2008, 5034 : 3 - +
  • [3] On the minimum hitting set of bundles problem
    Angel, Eric
    Bampis, Evripidis
    Gourves, Laurent
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (45) : 4534 - 4542
  • [4] On Structural Parameterizations of Hitting Set: Hitting Paths in Graphs Using 2-SAT
    Jansen, Bart M. P.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2016, 9224 : 472 - 486
  • [5] Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems
    Gutin, G.
    Jones, M.
    Yeo, A.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (41) : 5744 - 5751
  • [6] Minimum Hitting Set of Interval Bundles Problem: Computational Complexity and Approximability
    Gottschau, Marinus
    Leichter, Marilena
    ALGORITHMICA, 2022, 84 (08) : 2222 - 2239
  • [7] Minimum Hitting Set of Interval Bundles Problem: Computational Complexity and Approximability
    Marinus Gottschau
    Marilena Leichter
    Algorithmica, 2022, 84 : 2222 - 2239
  • [8] Profit Parameterizations of DOMINATING SET
    Fernau, Henning
    Stege, Ulrike
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 108 - 120
  • [9] Polynomial kernels for hitting forbidden minors under structural parameterizations
    Jansen, Bart M. P.
    Pieterse, Astrid
    THEORETICAL COMPUTER SCIENCE, 2020, 841 (841) : 124 - 166
  • [10] Learning the Inverse Hitting Problem
    Khurana, Harshit
    Hermus, James
    Gautier, Maxime
    Billard, Aude
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4180 - 4187