NiO/MWCNT Catalysts for Electrochemical Reduction of CO2

被引:0
|
作者
Shahid M. Bashir
Sk Safdar Hossain
Sleem ur Rahman
Shakeel Ahmed
Mohammad M. Hossain
机构
[1] King Fahd University of Petroleum & Minerals,Department of Chemical Engineering
[2] King Fahd University of Petroleum & Minerals,Center for Refining & Petrochemicals
[3] King Faisal University,Research Institute
来源
Electrocatalysis | 2015年 / 6卷
关键词
Electrochemical reduction; Syngas; MWCNT; Electrocatalyst; Faradaic efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
This communication reports the electrochemical reduction of CO2 on high surface area NiO/multi-walled carbon nanotube (MWCNT) catalysts. The catalysts are prepared by an incipient wetness technique with different NiO loadings. The prepared catalysts are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) techniques. A conventional two compartments half-cell and a reverse fuel cell are employed to establish the effects of variation of NiO loading on MWCNT. The characterization results indicate that high surface area of MWCNT provides good NiO dispersion on the catalyst surface. The NiO on MWCNT also shows high electrical conductivity in the fuel cells. In CO2 reduction, the catalysts demonstrate good CO2 conversion activity and produce high-pressure effects even at ambient conditions. The reduction product mainly contains syngas (CO and H2). In half-cell evaluation, an increase in current is observed with increasing NiO content up to 20 wt%. Further increase of NiO loading shows no significant increase in current density. Among the studied catalysts, NiO (20 wt%)/MWCNT displays optimum activity in both the half-cell and reverse fuel cell evaluations. With this catalyst, the total faradaic efficiency of 35.2 % is obtained at the potential of −1.7 V versus normal hydrogen electrode (NHE).
引用
收藏
页码:544 / 553
页数:9
相关论文
共 50 条
  • [21] Designing single atom catalysts for exceptional electrochemical CO2 reduction
    Humayun, Muhammad
    Bououdina, Mohamed
    Khan, Abbas
    Ali, Sajjad
    Wang, Chundong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (01)
  • [22] Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts
    Karapinar, Dilan
    Creissen, Charles E.
    de la Cruz, Jose Guillermo Rivera
    Schreiber, Moritz W.
    Fontecave, Marc
    ACS ENERGY LETTERS, 2021, 6 (02) : 694 - 706
  • [23] New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction
    Kumar, Bijandra
    Brian, Joseph P.
    Atla, Veerendra
    Kumari, Sudesh
    Bertram, Kari A.
    White, Robert T.
    Spurgeon, Joshua M.
    CATALYSIS TODAY, 2016, 270 : 19 - 30
  • [24] Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction
    Xie, Linfeng
    Liang, Jiashun
    Priest, Cameron
    Wang, Tanyuan
    Ding, Dong
    Wu, Gang
    Li, Qing
    CHEMICAL COMMUNICATIONS, 2021, 57 (15) : 1839 - 1854
  • [25] Electrochemical CO2 reduction: From catalysts to reactive thermodynamics and kinetics
    Yu, Feihan
    Deng, Kang
    Du, Minshu
    Wang, Wenxuan
    Liu, Feng
    Liang, Daxin
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2023, 6
  • [26] Design of pre-catalysts for heterogeneous CO2 electrochemical reduction
    He, Jingfu
    Wu, Chenghui
    Li, Yanming
    Li, Changli
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19508 - 19533
  • [27] Rational design of atomic site catalysts for electrochemical CO2 reduction
    Tan, Xin
    Zhuang, Zewen
    Zhang, Yu
    Sun, Kaian
    Chen, Chen
    CHEMICAL COMMUNICATIONS, 2023, 59 (19) : 2682 - 2696
  • [28] Carbon Catalysts for Electrochemical CO2 Reduction toward Multicarbon Products
    Pan, Fuping
    Yang, Xiaoxuan
    O'Carroll, Thomas
    Li, Haoyang
    Chen, Kai-Jie
    Wu, Gang
    ADVANCED ENERGY MATERIALS, 2022, 12 (24)
  • [29] Evolution of bismuth oxide catalysts during electrochemical CO2 reduction
    Wissink, Tim
    Man, Alex J. W.
    Chen, Wei
    Heinrichs, Jason M. J. J.
    van de Poll, Rim C. J.
    Figueiredo, Marta C.
    Hensen, Emiel J. M.
    JOURNAL OF CO2 UTILIZATION, 2023, 77
  • [30] Electrochemical CO2 reduction: from nanoclusters to single atom catalysts
    Lu, Fang
    Bao, Haihong
    Mi, Yuying
    Liu, Yifan
    Sun, Jiaqiang
    Peng, Xianyun
    Qiu, Yuan
    Zhuo, Longchao
    Liu, Xijun
    Luo, Jun
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (03): : 1012 - 1028