Quantization of integrable systems and a 2d/4d duality

被引:0
|
作者
Nick Dorey
Sungjay Lee
Timothy J. Hollowood
机构
[1] University of Cambridge,DAMTP, Centre for Mathematical Sciences
[2] Swansea University,Department of Physics
关键词
Supersymmetry and Duality; Supersymmetric gauge theory; Bethe Ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new duality between the F-terms of supersymmetric field theories defined in two-and four-dimensions respectively. The duality relates \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} super-symmetric gauge theories in four dimensions, deformed by an Ω-background in one plane, to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = \left( {2,2} \right) $\end{document} gauged linear σ-models in two dimensions. On the four dimensional side, our main example is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} SQCD with gauge group G = SU(L) and NF = 2 L fundamental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain. Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the existence of an isomorphism between the chiral ring of the 4 d theory and that of a certain two-dimensional theory. The latter can be understood as the worldvolume theory on a surface operator/vortex string probing the Higgs branch of the same 4 d theory. We check the proposed duality by explicit calculation at low orders in the instanton expansion. One striking consequence is that the Seiberg-Witten solution of the 4 d theory is captured by a one-loop computation in two dimensions. The duality also has interesting connections with the AGT conjecture, matrix models and topological string theory where it corresponds to a refined version of the geometric transition.
引用
收藏
相关论文
共 50 条
  • [31] Comments on symmetric mass generation in 2d and 4d
    David Tong
    Journal of High Energy Physics, 2022
  • [32] LOCAL DECODERS FOR THE 2D AND 4D TORIC CODE
    Breuckmann, Nikolas P.
    Duivenvoorden, Kasper
    Michels, Dominik
    Terhal, Barbara M.
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (3-4) : 181 - 208
  • [33] Towards a 4d/2d correspondence for Sicilian quivers
    Lotte Hollands
    Christoph A. Keller
    Jaewon Song
    Journal of High Energy Physics, 2011
  • [34] 2D:4D and sexually dimorphic facial characteristics
    Burriss, Robert P.
    Little, Anthony C.
    Nelson, Emma C.
    ARCHIVES OF SEXUAL BEHAVIOR, 2007, 36 (03) : 377 - 384
  • [35] 4D and 2D superconformal index with surface operator
    Nakayama, Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (08):
  • [36] The 2D:4D ratio, hand dominance, and gender
    Protopapas, Helen A. M.
    Bryden, Pamela J.
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2016, 38 : S135 - S135
  • [37] Association between the 2D:4D ratio and schizophrenia
    Han, Yuanyuan
    Deng, Wei
    Lei, Wei
    Lin, Yin
    Li, Yinfei
    Li, Mingli
    Li, Tao
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2020, 48 (06)
  • [38] 4D and 2D superconformal index with surface operator
    Yu Nakayama
    Journal of High Energy Physics, 2011
  • [39] Relation of 2D:4D ratio to aggression and anger
    Dogan, Asli
    Barut, Cagatay
    Konuk, Numan
    Bilge, Yasar
    NEUROLOGY PSYCHIATRY AND BRAIN RESEARCH, 2007, 14 (04) : 151 - 158
  • [40] Digit ratio (2D:4D) and testosterone supplementation
    Manning, John
    Cook, Christian
    Crewther, Blair
    EARLY HUMAN DEVELOPMENT, 2019, 139