A note on the zeros of zeta and L-functions

被引:0
|
作者
Emanuel Carneiro
Vorrapan Chandee
Micah B. Milinovich
机构
[1] IMPA - Instituto Nacional de Matemática Pura e Aplicada,Department of Mathematics
[2] Burapha University,Department of Mathematics
[3] University of Mississippi,undefined
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Riemann zeta-function; Automorphic ; -functions; Beurling–Selberg extremal problem; Extremal functions; Exponential type; 11M06; 11M26; 11M36; 11M41; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
Let πS(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi S(t)$$\end{document} denote the argument of the Riemann zeta-function at the point s=12+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\tfrac{1}{2}\,+\,it$$\end{document}. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for S(t). We discuss a generalization of this bound for a large class of L-functions including those which arise from cuspidal automorphic representations of GL(m) over a number field. We also prove a number of related results including bounding the order of vanishing of an L-function at the central point and bounding the height of the lowest zero of an L-function.
引用
收藏
页码:315 / 332
页数:17
相关论文
共 50 条