Let πS(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi S(t)$$\end{document} denote the argument of the Riemann zeta-function at the point s=12+it\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s=\tfrac{1}{2}\,+\,it$$\end{document}. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for S(t). We discuss a generalization of this bound for a large class of L-functions including those which arise from cuspidal automorphic representations of GL(m) over a number field. We also prove a number of related results including bounding the order of vanishing of an L-function at the central point and bounding the height of the lowest zero of an L-function.
机构:
IMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, BrazilIMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
Carneiro, Emanuel
Chandee, Vorrapan
论文数: 0引用数: 0
h-index: 0
机构:
Burapha Univ, Dept Math, Chon Buri 20131, ThailandIMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
Chandee, Vorrapan
Milinovich, Micah B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Math, University, MS 38677 USAIMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
机构:
CEA Saclay, Serv Phys Theor, CNRS, URA 2306, F-91191 Gif Sur Yvette, FranceCEA Saclay, Serv Phys Theor, CNRS, URA 2306, F-91191 Gif Sur Yvette, France