Multi-DOA estimation based on the KR image tensor and improved estimation network

被引:0
|
作者
Ye Yuan
Shuang Wu
Yong Yang
Naichang Yuan
机构
[1] National University of Defense Technology,State Key Laboratory of Complex Electromagnetic Environment Elects on Electronics and Information System
[2] Chinese Academy of Sciences,Innovation Academy for Microsatellites
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks have shown great performance for direction-of-arrival (DOA) estimation problem, but it is necessary to design some suitable networks to solve the multi-DOA estimation problem. In this paper, we use Khatri–Rao product to increase the degree of freedom of antenna array and obtain the image tensor of covariance matrix, then we propose an improved estimation network to process the tensor. We use the curriculum learning scheme and partial label strategy to develop a CurriculumNet training scheme. The training/validation results shows that the proposed training scheme can increase the generalization of the estimation network and improve the accuracy of network around 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\%$$\end{document}. The estimation performance of the proposed network shows high-resolution results, which can distinguish two adjacent signals with angle difference of 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document}. Moreover, the proposed estimation network has root mean square estimation error lower than 1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^\circ $$\end{document} when signal noise ratio equals -10dB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,10\,{\mathrm {dB}}$$\end{document} and can estimate DOAs precisely by only 8 snapshots, which performs much better than prior deep neural network based estimation methods and can estimate multi-DOA results under hostile estimation environments.
引用
收藏
相关论文
共 50 条
  • [21] Multi Exposure Image Motion Estimation Based on Improved Optical Flow
    Cong Bao-hai
    Zhang Ting-hua
    Li Ying-chun
    Tian Lei-yuan
    AOPC 2022: OPTICAL SENSING, IMAGING, AND DISPLAY TECHNOLOGY, 2022, 12557
  • [22] Multi Exposure Image Motion Estimation Based on Improved Optical Flow
    Cong Bao-hai
    Zhang Ting-hua
    Li Ying-chun
    Tian Lei-yuan
    INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING, ICOPEN 2022, 2022, 12550
  • [23] DOA Estimation of Coherent Signals Based on Improved SVD Algorithm\
    Zhao Zhi-jin
    Wang Yang
    Xu Chun-yun
    PROCEEDINGS OF THE 2012 SECOND INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2012), 2012, : 524 - 528
  • [24] Underdetermined DOA Estimation Algorithm Based on an Improved Nested Array
    Lanmei Wang
    Zhe Hui
    Shuzhen Wang
    Guibao Wang
    Wireless Personal Communications, 2020, 112 : 2423 - 2437
  • [25] Underdetermined DOA Estimation Algorithm Based on an Improved Nested Array
    Wang, Lanmei
    Hui, Zhe
    Wang, Shuzhen
    Wang, Guibao
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 112 (04) : 2423 - 2437
  • [26] RSS-Based improved DOA estimation using SVM
    Faye, Andre
    Sene, Moustapha
    Ndaw, Joseph
    2021 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET), 2021, : 125 - 130
  • [27] Wideband DOA estimation with interpolated focusing KR product matrix
    Liu, Qinghua
    Jin, Liangnian
    OuYang, Shan
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8 (03) : 201 - 210
  • [28] Expanded Nested MIMO Radar for DOD and DOA Estimation Based on Tensor Model
    Zhan, Chenghong
    Yang, Jing
    Hu, Guoping
    Zhang, Yule
    Guo, Shuhan
    Zhou, Hao
    2024 4TH INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING, ICICSE 2024, 2024, : 120 - 125
  • [29] Super resolution DOA estimation based on deep neural network
    Wanli Liu
    Scientific Reports, 10
  • [30] Super resolution DOA estimation based on deep neural network
    Liu, Wanli
    SCIENTIFIC REPORTS, 2020, 10 (01)