Multi-DOA estimation based on the KR image tensor and improved estimation network

被引:0
|
作者
Ye Yuan
Shuang Wu
Yong Yang
Naichang Yuan
机构
[1] National University of Defense Technology,State Key Laboratory of Complex Electromagnetic Environment Elects on Electronics and Information System
[2] Chinese Academy of Sciences,Innovation Academy for Microsatellites
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks have shown great performance for direction-of-arrival (DOA) estimation problem, but it is necessary to design some suitable networks to solve the multi-DOA estimation problem. In this paper, we use Khatri–Rao product to increase the degree of freedom of antenna array and obtain the image tensor of covariance matrix, then we propose an improved estimation network to process the tensor. We use the curriculum learning scheme and partial label strategy to develop a CurriculumNet training scheme. The training/validation results shows that the proposed training scheme can increase the generalization of the estimation network and improve the accuracy of network around 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\%$$\end{document}. The estimation performance of the proposed network shows high-resolution results, which can distinguish two adjacent signals with angle difference of 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document}. Moreover, the proposed estimation network has root mean square estimation error lower than 1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^\circ $$\end{document} when signal noise ratio equals -10dB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,10\,{\mathrm {dB}}$$\end{document} and can estimate DOAs precisely by only 8 snapshots, which performs much better than prior deep neural network based estimation methods and can estimate multi-DOA results under hostile estimation environments.
引用
收藏
相关论文
共 50 条
  • [1] Multi-DOA estimation based on the KR image tensor and improved estimation network
    Yuan, Ye
    Wu, Shuang
    Yang, Yong
    Yuan, Naichang
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Integration of the Multi-DOA Estimation Functionality to Human-Robot Interaction
    Rascon, Caleb
    Meza, Ivan
    Fuentes, Gibran
    Salinas, Lisset
    Pineda, Luis A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2015, 12
  • [3] DOA Estimation Method Based on Improved Deep Convolutional Neural Network
    Zhao, Fangzheng
    Hu, Guoping
    Zhan, Chenghong
    Zhang, Yule
    [J]. SENSORS, 2022, 22 (04)
  • [4] Wideband DOA Estimation Based on Tensor Completion and Decomposition
    Li, Kangning
    Shen, Qing
    Liu, Wei
    Wang, Min
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [5] DOA Estimation Based on Improved MUSIC Algorithm
    Dai Zeyang
    Du Yuming
    [J]. PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 481 - 485
  • [6] Tensor DoA Estimation With Directional Elements
    Raimondi, Francesca Elisa Diletta
    Comon, Pierre
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) : 648 - 652
  • [7] Coarray Tensor Completion for DOA Estimation
    Zheng, Hang
    Shi, Zhiguo
    Zhou, Chengwei
    de Almeida, Andre L. F.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (05) : 5472 - 5486
  • [8] Improved ESPRIT Algorithm Based DOA Estimation for Multi-target Tracking
    Gao, Liu-yang
    Chen, Song
    Wang, Zhi-min
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 510 - 517
  • [9] Multi-target DOA estimation method based on improved SP algorithm
    Cao, Ruoshi
    Zhao, Yongbo
    Qiu, Yucheng
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (07): : 2294 - 2300
  • [10] DOA Estimation Method based on Neural Network
    Ping, Zhang
    [J]. 2015 10TH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC), 2015, : 828 - 831