Nonlocal Theory of Excitation of Electron Bernstein Waves by a Relativistic Electron Beam in Plasma with Loss-Cone Distribution of Electron

被引:0
|
作者
Ashish Varma
Arvind Kumar
Asheel Kumar
机构
[1] University of Allahabad,Plasma Physics Research Group, Department of Physics
来源
Brazilian Journal of Physics | 2021年 / 51卷
关键词
Electron Bernstein wave; Magnetized plasma; Loss-cone distribution function; Growth rate; Slow cyclotron interaction;
D O I
暂无
中图分类号
学科分类号
摘要
A nonlocal theory of excitation of electron Bernstein waves in a magnetized plasma slab by a relativistic electron beam with loss-cone distribution of electrons is presented. Kinetic theory is employed to obtain the susceptibility of plasma electrons whereas fluid theory is used to obtain the susceptibility of beam electrons. The mode structure and growth rate of the electron Bernstein wave are obtained. The growth rate in the case of Cerenkov and slow cyclotron interactions are proportional to ωb01/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\omega }_{b0}}^{1/3}$$\end{document} and ωb0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega }_{b0}$$\end{document}, respectively. For typical parameter, the normalized growth rate attains maximum value at b≈1.743\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\approx 1.743$$\end{document} with different normalized beam velocities. These parameters control the growth rate due to nonlocality which rapidly decreases. The present theoretical scheme may be possible application in the field of heating of spherical torus plasmas.
引用
收藏
页码:661 / 666
页数:5
相关论文
共 50 条
  • [21] Electrostatic rogue waves in a plasma with a relativistic electron beam
    Benchriet, F.
    El-Tantawy, S. A.
    Moslem, W. M.
    Djebli, M.
    JOURNAL OF PLASMA PHYSICS, 2013, 79 : 847 - 851
  • [22] Approximate relativistic dispersion relation for electron Bernstein waves in a Maxwellian plasma
    Saveliev, AN
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (11) : 2003 - 2017
  • [23] PERPENDICULAR ELECTRON-CYCLOTRON EMISSION AND ABSORPTION FOR RELATIVISTIC LOSS-CONE TYPE DISTRIBUTIONS
    BORNATICI, M
    RUFFINA, U
    PLASMA PHYSICS AND CONTROLLED FUSION, 1986, 28 (10) : 1589 - 1608
  • [24] THE LOSS-CONE DRIVEN ELECTRON-CYCLOTRON MASER
    HEWITT, RG
    MELROSE, DB
    RONNMARK, KG
    AUSTRALIAN JOURNAL OF PHYSICS, 1982, 35 (04): : 447 - 471
  • [25] ELECTRON CYCLOTRON MASER INSTABILITY IN SPACE PLASMAS WITH KAPPA LOSS-CONE DISTRIBUTION
    Tang, J. F.
    Wu, D. J.
    Yan, Y. H.
    ASTROPHYSICAL JOURNAL, 2012, 745 (02):
  • [26] Excitation of electron Bernstein waves in spherical tori
    Preinhaelter, Josef
    Irzak, M.
    Vahala, Linda
    Vahala, George
    IEEE International Conference on Plasma Science, 2000,
  • [27] ELECTRON-BEAM ACCELERATION BY NONRESONANTLY DRIVEN RELATIVISTIC ELECTRON-PLASMA WAVES
    SUGAYA, R
    PHYSICS OF PLASMAS, 1994, 1 (08) : 2768 - 2776
  • [28] EXCITATION OF LF OSCILLATIONS AT THE INJECTION OF A RELATIVISTIC ELECTRON BEAM IN PLASMA
    Balakirev, V. A.
    Onishchenko, N. I.
    Onishchenko, I. N.
    UKRAINIAN JOURNAL OF PHYSICS, 2007, 52 (11): : 1068 - 1072
  • [29] THEORY OF ION WAVE EXCITATION BY ELECTRON PLASMA WAVES
    REPALOV, NS
    KHIZHNYA.NA
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1966, 11 (02): : 162 - &
  • [30] Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function - kinetic approach
    Shukla, Nidhi
    Mishra, Ruchi
    Varma, P.
    Tiwari, M. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (02)