Alzheimer’s disease (AD) accounts for almost three quarters of dementia patients and interferes people’s normal life. Great progress has been made recently in the study of Acetylcholinesterase (AChE), known as one of AD’s biomarkers. In this study, acetylcholinesterase inhibitors (AChEI) were collected to build a two-dimensional structure–activity relationship (2D-SAR) model and three-dimensional quantitative structure–activity relationship (3D-QSAR) model based on feature selection method combined with random forest. After calculation, the prediction accuracy of the 2D-SAR model was 89.63% by using the tenfold cross-validation test and 87.27% for the independent test set. Three cutting ways were employed to build 3D-QSAR models. A model with the highest q2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${q}^{2}$$\end{document} (cross-validated correlation coefficient) and r2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${r}^{2 }$$\end{document}(non-cross-validated correlation coefficient) was obtained to predict AChEI activity. The mean absolute error (MAE) of the training set and the test set was 0.0689 and 0.5273, respectively. In addition, molecular docking was also employed to reveal that the ionization state of the compounds had an impact upon their interaction with AChE. Molecular docking results indicate that Ser124 might be one of the active site residues.
机构:
King Saud Univ, Coll Sci, Dept Chem, Girls Sect, POB 22452, Riyadh 11495, Saudi Arabia
NODCAR, 51 Wezaret El Zerra St, Giza 35521, EgyptVidya Bharati Coll, Dept Chem, Amravati 444602, Maharashtra, India
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Neaz, M. M.
Pasha, F. A.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Pasha, F. A.
Muddassar, M.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Muddassar, M.
Lee, So Ha
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Lee, So Ha
Sim, Taebo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Sim, Taebo
Hah, Jung-Mi
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Hah, Jung-Mi
Cho, Seung Joo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea
Chosun Univ, Res Ctr Resistant Cells, Kwangju 501759, South Korea
Chosun Univ, Coll Med, Kwangju 501759, South KoreaKorea Inst Sci & Technol, Future Fus Technol Div, Computat Sci Ctr, Seoul 130650, South Korea