A complex for the cohomology of restricted Lie algebras

被引:0
|
作者
Tyler J. Evans
Dmitry Fuchs
机构
[1] Humboldt State University,Department of Mathematics
[2] University of California,Department of Mathematics
[3] Davis,undefined
关键词
17B40; 17B56; Restricted Lie algebras; cohomology; extensions; deformations;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g} = (\mathfrak{g}, [p])$$ \end{document} be a restricted Lie algebra of characteristic p and M a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g}$$\end{document}-module. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g}$$\end{document} is abelian, we give an explicit description of the cochain spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} and differentials for the computation of the restricted Lie algebra cohomology \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^k(\mathfrak{g}; M)$$\end{document} for k < p. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g}$$\end{document} is an arbitrary (non-abelian) restricted Lie algebra, we give explicit descriptions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} for k ≤ 3. We use our results to classify extensions of restricted modules and infinitesimal deformations of restricted Lie algebras.
引用
收藏
页码:159 / 179
页数:20
相关论文
共 50 条