Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g} = (\mathfrak{g}, [p])$$
\end{document} be a restricted Lie algebra of characteristic p and M a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document}-module. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document} is abelian, we give an explicit description of the cochain spaces \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} and differentials for the computation of the restricted Lie algebra cohomology \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^k(\mathfrak{g}; M)$$\end{document} for k < p. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document} is an arbitrary (non-abelian) restricted Lie algebra, we give explicit descriptions of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} for k ≤ 3. We use our results to classify extensions of restricted modules and infinitesimal deformations of restricted Lie algebras.
机构:
School of Mathematical Sciences, Heilongjiang University
School of Mathematical and Statistics, Northeast Normal UniversitySchool of Mathematical Sciences, Heilongjiang University
Ji Xia YUAN
Liang Yun CHEN
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematical and Statistics, Northeast Normal UniversitySchool of Mathematical Sciences, Heilongjiang University
Liang Yun CHEN
Yan CAO
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Harbin University of Science and TechnologySchool of Mathematical Sciences, Heilongjiang University