共 50 条
A complex for the cohomology of restricted Lie algebras
被引:0
|作者:
Tyler J. Evans
Dmitry Fuchs
机构:
[1] Humboldt State University,Department of Mathematics
[2] University of California,Department of Mathematics
[3] Davis,undefined
来源:
关键词:
17B40;
17B56;
Restricted Lie algebras;
cohomology;
extensions;
deformations;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g} = (\mathfrak{g}, [p])$$
\end{document} be a restricted Lie algebra of characteristic p and M a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document}-module. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document} is abelian, we give an explicit description of the cochain spaces \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} and differentials for the computation of the restricted Lie algebra cohomology \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^k(\mathfrak{g}; M)$$\end{document} for k < p. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{g}$$\end{document} is an arbitrary (non-abelian) restricted Lie algebra, we give explicit descriptions of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^k(\mathfrak{g}; M)$$\end{document} for k ≤ 3. We use our results to classify extensions of restricted modules and infinitesimal deformations of restricted Lie algebras.
引用
收藏
页码:159 / 179
页数:20
相关论文