Properties of the solutions of the Ginzburg-Landau equation on the bifurcation branch

被引:0
|
作者
Myrto Sauvageot
机构
[1] CNRS-Université Pierre et Marie Curie 4 place Jussieu,Laboratoire d’ Analyse Numérique
关键词
34L30; 35B05; 35B32; Ginzburg-Landau energy; Ginzburg-Landau equation; bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
Generalizing previous results of M. Comte and P. Mironescu, it is shown that for degree d large enough (such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ 8d \varepsilon_{d}^{2} -1 > \sqrt{4d-1} $$ \end{document}), there is a bifurcation branch in the set of the solutions of the Ginzburg-Landau equation, emanating from the branch of radial solutions at the critical value εd of the parameter. Moreover, the solutions on the bifurcation branch admit exactly d zeroes, and the energy on the bifurcation branch is strictly smaller than the energy on the radial branch.
引用
收藏
页码:375 / 397
页数:22
相关论文
共 50 条
  • [21] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    [J]. RESULTS IN PHYSICS, 2021, 23
  • [22] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    [J]. MATEMATIKA, 2009, 25 (01): : 39 - 51
  • [23] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Yu. N. Ovchinnikov
    [J]. Journal of Experimental and Theoretical Physics, 1999, 88 : 398 - 405
  • [24] ON THE STABILITY OF RADIAL SOLUTIONS OF THE GINZBURG-LANDAU EQUATION
    MIRONESCU, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 334 - 344
  • [25] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    [J]. PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633
  • [26] PERIODIC-SOLUTIONS OF THE GINZBURG-LANDAU EQUATION
    SIROVICH, L
    NEWTON, PK
    [J]. PHYSICA D, 1986, 21 (01): : 115 - 125
  • [27] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Ovchinnikov, YN
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 398 - 405
  • [28] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [29] Bifurcation and new traveling wave solutions for the 2D Ginzburg-Landau equation
    Elmandouh, A. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08):
  • [30] Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties
    Huang, SZ
    Takác, P
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) : 825 - 848