Properties of the solutions of the Ginzburg-Landau equation on the bifurcation branch

被引:0
|
作者
Myrto Sauvageot
机构
[1] CNRS-Université Pierre et Marie Curie 4 place Jussieu,Laboratoire d’ Analyse Numérique
关键词
34L30; 35B05; 35B32; Ginzburg-Landau energy; Ginzburg-Landau equation; bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
Generalizing previous results of M. Comte and P. Mironescu, it is shown that for degree d large enough (such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ 8d \varepsilon_{d}^{2} -1 > \sqrt{4d-1} $$ \end{document}), there is a bifurcation branch in the set of the solutions of the Ginzburg-Landau equation, emanating from the branch of radial solutions at the critical value εd of the parameter. Moreover, the solutions on the bifurcation branch admit exactly d zeroes, and the energy on the bifurcation branch is strictly smaller than the energy on the radial branch.
引用
收藏
页码:375 / 397
页数:22
相关论文
共 50 条