Coherence relative to a weak torsion class

被引:0
|
作者
Zhanmin Zhu
机构
[1] Jiaxing University,Department of Mathematics
来源
关键词
(; ,; )-presented module; (; ,; )-injective module; (; ,; )-flat module; (; ,; )-coherent ring; 16D40; 16D50; 16P70;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a ring. A subclass T of left R-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let T be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called T-finitely generated if there exists a finitely generated submodule N such that M/N ∈ T; a left R-module A is called (T,n)-presented if there exists an exact sequence of left R-modules 0→Kn−1→Fn−1→⋯→F1→F0→M→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \to {K_{n - 1}} \to {F_{n - 1}} \to \cdots \to {F_1} \to {F_0} \to M \to 0$$\end{document} such that F0,..., Fn−1 are finitely generated free and Kn−1 is T-finitely generated; a left R-module M is called (T,n)-injective, if ExtnR(A,M) = 0 for each (T, n+1)-presented left R-module A; a right R-module M is called (T,n)-flat, if TorRn (M,A) = 0 for each (T, n+1)-presented left R-module A. A ring R is called (T,n)-coherent, if every (T, n+1)-presented module is (n + 1)-presented. Some characterizations and properties of these modules and rings are given.
引用
收藏
页码:455 / 474
页数:19
相关论文
共 50 条
  • [31] MULTIPLICATION MODULES RELATIVE TO TORSION THEORIES
    ESCORIZA, J
    TORRECILLAS, B
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (11) : 4315 - 4331
  • [32] Extending modules relative to a torsion theory
    Semra Doğruöz
    Czechoslovak Mathematical Journal, 2008, 58 : 381 - 393
  • [33] CS modules relative to a torsion theory
    Charalambides, Stelios
    Clark, John
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (03) : 291 - 308
  • [34] SEMIPERFECT MODULES RELATIVE TO A TORSION THEORY
    HERNANDEZ, JLG
    PARDO, JLG
    HERNANDEZ, JM
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1986, 43 (02) : 145 - 172
  • [35] Maximum Relative Entropy of Coherence: An Operational Coherence Measure
    Bu, Kaifeng
    Singh, Uttam
    Fei, Shao-Ming
    Pati, Arun Kumar
    Wu, Junde
    PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [36] A note on relative flatness and coherence
    Zhang, Xiaoxiang
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (11) : 3321 - 3330
  • [37] RELATIVE COHERENCE AND TTF CLASSES
    JONES, MF
    TEPLY, ML
    HARUI, H
    COMMUNICATIONS IN ALGEBRA, 1982, 10 (18) : 2019 - 2029
  • [38] Relative ε-pseudo weak demicompactness and measures of weak noncompactness
    Chtourou, Ines
    Krichen, Bilel
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
  • [39] On a weak Gauss law in general relativity and torsion
    Schuecker, Thomas
    ZouZou, Sami R.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (24)
  • [40] Relative weak derived functors
    Prabakaran, Panneerselvam
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (01): : 35 - 50