Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species

被引:0
|
作者
Pawluk A. [1 ]
Staals R.H.J. [2 ]
Taylor C. [2 ]
Watson B.N.J. [2 ]
Saha S. [3 ]
Fineran P.C. [2 ]
Maxwell K.L. [4 ]
Davidson A.R. [1 ,3 ]
机构
[1] Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON
[2] Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin
[3] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON
[4] Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, M5S 3E1, ON
基金
加拿大健康研究院;
关键词
D O I
10.1038/nmicrobiol.2016.85
中图分类号
学科分类号
摘要
CRISPR-Cas systems provide sequence-specific adaptive immunity against foreign nucleic acids1,2. They are present in approximately half of all sequenced prokaryotes3 and are expected to constitute a major barrier to horizontal gene transfer. We previously described nine distinct families of proteins encoded in Pseudomonas phage genomes that inhibit CRISPR-Cas function4,5. We have developed a bioinformatic approach that enabled us to discover additional anti-CRISPR proteins encoded in phages and other mobile genetic elements of diverse bacterial species. We show that five previously undiscovered families of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of both Pseudomonas aeruginosa and Pectobacterium atrosepticum, and a dual specificity anti-CRISPR inactivates both type I-F and I-E CRISPR-Cas systems. Mirroring the distribution of the CRISPR-Cas systems they inactivate, these anti-CRISPRs were found in species distributed broadly across the phylum Proteobacteria. Importantly, anti-CRISPRs originating from species with divergent type I-F CRISPR-Cas systems were able to inhibit the two systems we tested, highlighting their broad specificity. These results suggest that all type I-F CRISPR-Cas systems are vulnerable to inhibition by anti-CRISPRs. Given the widespread occurrence and promiscuous activity of the anti-CRISPRs described here, we propose that anti-CRISPRs play an influential role in facilitating the movement of DNA between prokaryotes by breaching the barrier imposed by CRISPR-Cas systems. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9
    Felix Bubeck
    Mareike D. Hoffmann
    Zander Harteveld
    Sabine Aschenbrenner
    Andreas Bietz
    Max C. Waldhauer
    Kathleen Börner
    Julia Fakhiri
    Carolin Schmelas
    Laura Dietz
    Dirk Grimm
    Bruno E. Correia
    Roland Eils
    Dominik Niopek
    Nature Methods, 2018, 15 : 924 - 927
  • [22] Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9
    Bubeck, Felix
    Hoffmann, Mareike D.
    Harteveld, Zander
    Aschenbrenner, Sabine
    Bietz, Andreas
    Waldhauer, Max C.
    Boerner, Kathleen
    Fakhiri, Julia
    Schmelas, Carolin
    Dietz, Laura
    Grimm, Dirk
    Correia, Bruno E.
    Eils, Roland
    Niopek, Dominik
    NATURE METHODS, 2018, 15 (11) : 924 - +
  • [23] Engineering Anti-CRISPR Proteins to Create CRISPR-Cas Protein Switches for Activatable Genome Editing and Viral Protease Detection
    Kang, Wenyuan
    Xiao, Fei
    Zhu, Xi
    Ling, Xinyu
    Xie, Shiyi
    Li, Ruimiao
    Yu, Peihang
    Cao, Linxin
    Lei, Chunyang
    Qiu, Ye
    Liu, Tao
    Nie, Zhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (16)
  • [24] Engineered Anti-CRISPR Proteins for Precision Control of CRISPR-Cas9
    Bubeck, Felix
    Hoffmann, Mareike D.
    Harteveld, Zander
    Aschenbrenner, Sabine
    Bietz, Andreas
    Notbohm, Judith
    Stengl, Christina
    Mathony, Jan
    Waldhauer, Max C.
    Dietz, Laura
    Boerner, Kathleen
    Fakhiri, Julia
    Schmelas, Carolin
    Grimm, Dirk
    Correia, Bruno E.
    Eils, Roland
    Niopek, Dominik
    MOLECULAR THERAPY, 2019, 27 (04) : 297 - 297
  • [25] Functionally diverse type V CRISPR-Cas systems
    Yan, Winston X.
    Hunnewell, Pratyusha
    Alfonse, Lauren E.
    Carte, Jason M.
    Keston-Smith, Elise
    Sothiselvam, Shanmugapriya
    Garrity, Anthony J.
    Chong, Shaorong
    Makarova, Kira S.
    Koonin, Eugene V.
    Cheng, David R.
    Scott, David A.
    SCIENCE, 2019, 363 (6422) : 88 - +
  • [26] Novel structure of the anti-CRISPR protein AcrIE3 and its implication on the CRISPR-Cas inhibition
    Kim, Do Yeon
    Ha, Hyun Ji
    Park, Hyun Ho
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 722
  • [27] Prediction of protein–protein interactions between anti-CRISPR and CRISPR-Cas using machine learning technique
    Sneha Murmu
    Himanshushekhar Chaurasia
    Sayanti Guha Majumdar
    A. R. Rao
    Anil Rai
    Sunil Archak
    Journal of Plant Biochemistry and Biotechnology, 2023, 32 : 818 - 830
  • [28] Mechanistic insights into the inhibition of the CRISPR-Cas surveillance complex by anti-CRISPR protein AcrIF13
    Wang, Hao
    Gao, Teng
    Zhou, Yu
    Ren, Junhui
    Guo, Junhua
    Zeng, Jianwei
    Xiao, Yu
    Zhang, Yi
    Feng, Yue
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (03)
  • [29] Anti-CRISPR Proteins in Archaea
    Peng, Xu
    Mayo-Munoz, David
    Bhoobalan-Chitty, Yuvaraj
    Martinez-Alvarez, Laura
    TRENDS IN MICROBIOLOGY, 2020, 28 (11) : 913 - 921
  • [30] Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein
    Bhoobalan-Chitty, Yuvaraj
    Johansen, Thomas Baek
    Di Cianni, Nadia
    Peng, Xu
    CELL, 2019, 179 (02) : 448 - +