Stabilization of a rigid body moving in a compressible viscous fluid

被引:0
|
作者
Arnab Roy
Takéo Takahashi
机构
[1] Université de Lorraine,
[2] CNRS,undefined
[3] Inria,undefined
[4] IECL,undefined
来源
关键词
Fluid-structure interaction; Compressible Navier–Stokes system; Global solutions; Stabilization; 35Q35; 35D30; 35D35; 35R37; 76N10; 93D15; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the stabilizability of a fluid-structure interaction system where the fluid is viscous and compressible and the structure is a rigid ball. The feedback control of the system acts on the ball and corresponds to a force that would be produced by a spring and a damper connecting the center of the ball to a fixed point h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document}. We prove the global-in-time existence of strong solutions for the corresponding system under a smallness condition on the initial velocities and on the distance between the initial position of the center of the ball and h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document}. Then, we show with our feedback law, that the fluid and the structure velocities go to 0 and that the center of the ball goes to h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document} as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
页码:167 / 200
页数:33
相关论文
共 50 条