Stabilization of a rigid body moving in a compressible viscous fluid

被引:0
|
作者
Arnab Roy
Takéo Takahashi
机构
[1] Université de Lorraine,
[2] CNRS,undefined
[3] Inria,undefined
[4] IECL,undefined
来源
关键词
Fluid-structure interaction; Compressible Navier–Stokes system; Global solutions; Stabilization; 35Q35; 35D30; 35D35; 35R37; 76N10; 93D15; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the stabilizability of a fluid-structure interaction system where the fluid is viscous and compressible and the structure is a rigid ball. The feedback control of the system acts on the ball and corresponds to a force that would be produced by a spring and a damper connecting the center of the ball to a fixed point h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document}. We prove the global-in-time existence of strong solutions for the corresponding system under a smallness condition on the initial velocities and on the distance between the initial position of the center of the ball and h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document}. Then, we show with our feedback law, that the fluid and the structure velocities go to 0 and that the center of the ball goes to h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_1$$\end{document} as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
页码:167 / 200
页数:33
相关论文
共 50 条
  • [1] Stabilization of a rigid body moving in a compressible viscous fluid
    Roy, Arnab
    Takahashi, Takeo
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 167 - 200
  • [2] Stabilization of a rigid body in a viscous incompressible fluid
    Do, K. D.
    [J]. OCEAN ENGINEERING, 2023, 269
  • [3] On the vanishing rigid body problem in a viscous compressible fluid
    Bravin, Marco
    Necasova, Sarka
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 345 : 45 - 77
  • [4] On the motion of a small rigid body in a viscous compressible fluid
    Feireisl, Eduard
    Roy, Arnab
    Zarnescu, Arghir
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (05) : 794 - 818
  • [5] Small Moving Rigid Body into a Viscous Incompressible Fluid
    Christophe Lacave
    Takéo Takahashi
    [J]. Archive for Rational Mechanics and Analysis, 2017, 223 : 1307 - 1335
  • [6] Small Moving Rigid Body into a Viscous Incompressible Fluid
    Lacave, Christophe
    Takahashi, Takeo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1307 - 1335
  • [7] On the identifiability of a rigid body moving in a stationary viscous fluid
    Conca, Carlos
    Schwindt, Erica L.
    Takahashi, Takeo
    [J]. INVERSE PROBLEMS, 2012, 28 (01)
  • [8] FORCE ACTING ON A RIGID BODY MOVING IN A VISCOUS FLUID.
    Utkina, S.N.
    [J]. Moscow University mechanics bulletin, 1981, 36 (3-4) : 53 - 56
  • [9] On the motion of rigid bodies in a viscous compressible fluid
    Feireisl, E
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (04) : 281 - 308
  • [10] On the Motion of Rigid Bodies in a Viscous Compressible Fluid
    Eduard Feireisl
    [J]. Archive for Rational Mechanics and Analysis, 2003, 167 : 281 - 308