Constructions and bounds on quaternary linear codes with Hermitian hull dimension one

被引:0
|
作者
Todsapol Mankean
Somphong Jitman
机构
[1] Silpakorn University,Department of Mathematics, Faculty of Science
来源
关键词
94B05; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
Due to their practical applications, hulls of linear codes have been of interest and extensively studied. In this paper, we focus on constructions and bounds on quaternary linear codes with Hermitian hull dimension one. Optimal [n,2]4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n,2]_4$$\end{document} codes with Hermitian hull dimension one are constructed for all lengths n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, such that n≡1,2,4(mod5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 1,2,4 \ (\mathrm{mod}\ 5)$$\end{document}. For positive integers n≡0,3(mod5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 0,3 \ (\mathrm{mod}\ 5)$$\end{document}, good lower and upper bounds on the minimum weight of quaternary [n,2]4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n,2]_4$$\end{document} codes with Hermitian hull dimension one are given.
引用
收藏
页码:175 / 184
页数:9
相关论文
共 50 条
  • [1] Constructions and bounds on quaternary linear codes with Hermitian hull dimension one
    Mankean, Todsapol
    Jitman, Somphong
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (01) : 175 - 184
  • [2] Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs
    Shitao Li
    Minjia Shi
    Huizhou Liu
    [J]. Quantum Information Processing, 22
  • [3] Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs
    Li, Shitao
    Shi, Minjia
    Liu, Huizhou
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (10)
  • [4] Constructions of Linear Codes With One-Dimensional Hull
    Li, Chengju
    Zeng, Peng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1668 - 1676
  • [5] Improved Bounds for Quaternary Linear Codes of Dimension 6
    T. Aaron Gulliver
    Patric R.J. Östergård
    [J]. Applicable Algebra in Engineering, Communication and Computing, 1998, 9 : 153 - 159
  • [6] Improved bounds for quaternary linear codes of dimension 6
    Gulliver, TA
    Ostergard, PRJ
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (02) : 153 - 159
  • [7] Improved bounds for quaternary linear codes of dimension 6
    Gulliver, T.Aaron
    Ostergard, Patric R.J.
    [J]. Applicable Algebra in Engineering, Communications and Computing, 1998, 9 (02): : 153 - 159
  • [8] Optimal binary and ternary linear codes with hull dimension one
    Todsapol Mankean
    Somphong Jitman
    [J]. Journal of Applied Mathematics and Computing, 2020, 64 : 137 - 155
  • [9] Optimal binary and ternary linear codes with hull dimension one
    Mankean, Todsapol
    Jitman, Somphong
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 64 (1-2) : 137 - 155
  • [10] New bounds for the minimum length of quaternary linear codes of dimension five
    Boukliev, IG
    [J]. DISCRETE MATHEMATICS, 1997, 169 (1-3) : 185 - 192