Improved bounds for quaternary linear codes of dimension 6

被引:4
|
作者
Gulliver, TA
Ostergard, PRJ
机构
[1] Univ Canterbury, Dept Elect & Elect Engn, Christchurch, New Zealand
[2] Helsinki Univ Technol, Dept Comp Sci, FIN-02150 Espoo, Finland
关键词
quasi-cyclic codes; quaternary linear codes; tabu search;
D O I
10.1007/s002000050100
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, twenty new codes of dimension 6 are presented which give improved bounds on the maximum possible minimum distance of quaternary linear codes. These codes belong to the class of quasi-twisted (QT) codes, and have been constructed using a stochastic optimization algorithm, tabu search. A table of upper and lower bounds for d(4)(n, 6) is presented for n less than or equal to 200.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [1] Improved Bounds for Quaternary Linear Codes of Dimension 6
    T. Aaron Gulliver
    Patric R.J. Östergård
    [J]. Applicable Algebra in Engineering, Communication and Computing, 1998, 9 : 153 - 159
  • [2] Improved bounds for quaternary linear codes of dimension 6
    Gulliver, T.Aaron
    Ostergard, Patric R.J.
    [J]. Applicable Algebra in Engineering, Communications and Computing, 1998, 9 (02): : 153 - 159
  • [3] Improved bounds for ternary linear codes of dimension
    Gulliver, TA
    Ostergard, PRJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1377 - 1381
  • [4] Constructions and bounds on quaternary linear codes with Hermitian hull dimension one
    Mankean, Todsapol
    Jitman, Somphong
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (01) : 175 - 184
  • [5] Constructions and bounds on quaternary linear codes with Hermitian hull dimension one
    Todsapol Mankean
    Somphong Jitman
    [J]. Arabian Journal of Mathematics, 2021, 10 : 175 - 184
  • [6] New bounds for the minimum length of quaternary linear codes of dimension five
    Boukliev, IG
    [J]. DISCRETE MATHEMATICS, 1997, 169 (1-3) : 185 - 192
  • [7] Improved Bounds for Ternary Linear Codes of Dimension 8 Using Tabu Search
    T. Aaron Gulliver
    Patric R.J. Östergård
    [J]. Journal of Heuristics, 2001, 7 : 37 - 46
  • [8] Improved bounds for ternary linear codes of dimension 8 using tabu search
    Gulliver, TA
    Östergård, PRJ
    [J]. JOURNAL OF HEURISTICS, 2001, 7 (01) : 37 - 46
  • [9] Optimal quaternary linear codes of dimension five
    Boukliev, I
    Daskalov, R
    Kapralov, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1228 - 1235
  • [10] NEW BOUNDS ON BINARY LINEAR CODES OF DIMENSION 8
    DODUNEKOV, SM
    HELLESETH, T
    MANEV, N
    YTREHUS, O
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) : 917 - 919