Non-metric Propositional Similarity

被引:0
|
作者
A. C. Paseau
机构
[1] Wadham College,
[2] University of Oxford,undefined
来源
Erkenntnis | 2022年 / 87卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The idea that sentences can be closer or further apart in meaning is highly intuitive. Not only that, it is also a pillar of logic, semantic theory and the philosophy of science, and follows from other commitments about similarity. The present paper proposes a novel way of comparing the ‘distance’ between two pairs of propositions. We define ‘p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document} is closer in meaning to p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} than p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_3$$\end{document} is to p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_4$$\end{document}’ and thereby give a precise account of comparative propositional similarity facts. Notably, our definition eschews metric assumptions, which are unrealistic in most applications of interest.
引用
收藏
页码:2307 / 2328
页数:21
相关论文
共 50 条
  • [1] Non-metric Propositional Similarity
    Paseau, A. C.
    ERKENNTNIS, 2022, 87 (05) : 2307 - 2328
  • [2] Non-metric similarity ranking for image retrieval
    Cha, Guang-Ho
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, 4080 : 853 - 862
  • [3] On fast non-metric similarity search by metric access methods
    Skopal, Tomas
    ADVANCES IN DATABASE TECHNOLOGY - EDBT 2006, 2006, 3896 : 718 - 736
  • [4] Non-metric Similarity Search Using Genetic TriGen
    Bernhauer, David
    Skopal, Tomas
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2019), 2019, 11807 : 86 - 93
  • [5] Learning non-metric visual similarity for image retrieval
    Garcia, Noa
    Vogiatzis, George
    IMAGE AND VISION COMPUTING, 2019, 82 : 18 - 25
  • [6] Using tuneable fuzzy similarity in non-metric search
    Vojtas, Peter
    Eckhardt, Alan
    SISAP 2009: 2009 SECOND INTERNATIONAL WORKSHOP ON SIMILARITY SEARCH AND APPLICATIONS, PROCEEDINGS, 2009, : 163 - 164
  • [7] Non-metric Similarity Graphs for Maximum Inner Product Search
    Morozov, Stanislav
    Babenko, Artem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Efficient RkNN Retrieval with Arbitrary Non-Metric Similarity Measures
    Deepak, P.
    Deshpande, Prasad M.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2010, 3 (01): : 1243 - 1254
  • [9] Non-Metric Similarity Search Problems in Very Large Collections
    Bustos, Benjamin
    Skopal, Tomas
    IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 1362 - 1365
  • [10] NM-tree: Flexible approximate similarity search in metric and non-metric spaces
    Skopal, Tomas
    Lokoc, Jakub
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, 5181 : 312 - 325