Non-metric Similarity Search Using Genetic TriGen

被引:3
|
作者
Bernhauer, David [1 ,2 ]
Skopal, Tomas [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Informat Technol, Prague, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
关键词
Approximate similarity search; Semi-metric space; Genetic TriGen;
D O I
10.1007/978-3-030-32047-8_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The metric space model is a popular and extensible model for indexing data for fast similarity search. However, there is often need for broader concepts of similarities (beyond the metric space model) while these cannot directly benefit from metric indexing. This paper focuses on approximate search in semi-metric spaces using a genetic variant of the TriGen algorithm. The original TriGen algorithm generates metric modifications of semi-metric distance functions, thus allowing metric indexes to index non-metric models. However, "analytic" modifications provided by TriGen are not stable in predicting the retrieval error. In our approach, the genetic variant of TriGen - the TriGenGA - uses genetically learned semi-metric modifiers (piecewise linear functions) that lead to better estimates of the retrieval error. Additionally, the TriGenGA modifiers result in better overall performance than original TriGen modifiers.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条
  • [1] Using tuneable fuzzy similarity in non-metric search
    Vojtas, Peter
    Eckhardt, Alan
    SISAP 2009: 2009 SECOND INTERNATIONAL WORKSHOP ON SIMILARITY SEARCH AND APPLICATIONS, PROCEEDINGS, 2009, : 163 - 164
  • [2] On fast non-metric similarity search by metric access methods
    Skopal, Tomas
    ADVANCES IN DATABASE TECHNOLOGY - EDBT 2006, 2006, 3896 : 718 - 736
  • [3] Non-metric Similarity Graphs for Maximum Inner Product Search
    Morozov, Stanislav
    Babenko, Artem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [4] Non-Metric Similarity Search Problems in Very Large Collections
    Bustos, Benjamin
    Skopal, Tomas
    IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 1362 - 1365
  • [5] Non-metric Propositional Similarity
    Paseau, A. C.
    ERKENNTNIS, 2022, 87 (05) : 2307 - 2328
  • [6] Non-metric Propositional Similarity
    A. C. Paseau
    Erkenntnis, 2022, 87 : 2307 - 2328
  • [7] NM-tree: Flexible approximate similarity search in metric and non-metric spaces
    Skopal, Tomas
    Lokoc, Jakub
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, 5181 : 312 - 325
  • [8] Non-metric similarity search of tandem mass spectra including posttranslational modifications
    Novak, Jiri
    Skopal, Tomas
    Hoksza, David
    Lokoc, Jakub
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 13 : 19 - 31
  • [9] Non-metric similarity ranking for image retrieval
    Cha, Guang-Ho
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, 4080 : 853 - 862
  • [10] Learning non-metric visual similarity for image retrieval
    Garcia, Noa
    Vogiatzis, George
    IMAGE AND VISION COMPUTING, 2019, 82 : 18 - 25