Around the Thom–Sebastiani theorem, with an appendix by Weizhe Zheng

被引:0
|
作者
Luc Illusie
机构
[1] Université Paris-Saclay,Laboratoire de Mathématiques d’Orsay, Univ. Paris
来源
manuscripta mathematica | 2017年 / 152卷
关键词
Primary: 14F20; Secondary: 11T23; 18F10; 32S30; 32S40;
D O I
暂无
中图分类号
学科分类号
摘要
For germs of holomorphic functions f:(Cm+1,0)→(C,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: (\mathbf {C}^{m+1},0) \rightarrow (\mathbf {C},0)$$\end{document}, g:(Cn+1,0)→(C,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g: (\mathbf {C}^{n+1},0) \rightarrow (\mathbf {C},0)$$\end{document} having an isolated critical point at 0 with value 0, the classical Thom–Sebastiani theorem describes the vanishing cycles group Φm+n+1(f⊕g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^{m+n+1}(f \oplus g)$$\end{document} (and its monodromy) as a tensor product Φm(f)⊗Φn(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^m(f) \otimes \Phi ^n(g)$$\end{document}, where (f⊕g)(x,y)=f(x)+g(y),x=(x0,…,xm),y=(y0,…,yn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f \oplus g)(x,y) = f(x) + g(y), x = (x_0,{\ldots },x_m), y = (y_0,{\ldots },y_n)$$\end{document}. We prove algebraic variants and generalizations of this result in étale cohomology over fields of any characteristic, where the tensor product is replaced by a certain local convolution product, as suggested by Deligne. They generalize Fu (Math Res Lett 21:101–119, 2014). The main ingredient is a Künneth formula for RΨ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\Psi $$\end{document} in the framework of Deligne’s theory of nearby cycles over general bases. In the last section, we study the tame case, and the relations between tensor and convolution products, in both global and local situations.
引用
收藏
页码:61 / 125
页数:64
相关论文
共 50 条
  • [21] On the Thom-Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities
    Epure, Raul
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 539 - 547
  • [22] Derived factorization categories of non-Thom-Sebastiani-type sums of potentials
    Hirano, Yuki
    Ouchi, Genki
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (01) : 1 - 75
  • [23] Thom-Sebastiani Theorems for Filtered D-Modules and for Multiplier Ideals
    Maxim, Laurentiu
    Saito, Morihiko
    Schuermann, Joerg
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (01) : 91 - 111
  • [24] On the Li-Zheng theorem
    Feldman, Gennadiy
    AEQUATIONES MATHEMATICAE, 2024,
  • [25] F-THRESHOLDS AND TEST IDEALS OF THOM-SEBASTIANI TYPE POLYNOMIALS
    Villa, Manuel gonzalez
    Jaramillo-velez, Delio
    Nunez-betancourt, Luis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3739 - 3755
  • [26] THE EQUIVARIANT THOM ISOMORPHISM THEOREM
    COSTENOBLE, SR
    WANER, S
    PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (01) : 21 - 39
  • [27] RELATIVE DOLD-THOM THEOREM
    DELEANU, A
    ARCHIV DER MATHEMATIK, 1966, 17 (03) : 234 - &
  • [28] The intersection Dold-Thom theorem
    Gajer, P
    TOPOLOGY, 1996, 35 (04) : 939 - 967
  • [29] ON A THEOREM OF RENE THOM IN GEOMETRIE FINIE
    Chaperon, Marc
    Meyer, Daniel
    ENSEIGNEMENT MATHEMATIQUE, 2009, 55 (3-4): : 329 - 357
  • [30] A GENERALIZATION OF THOM'S TRANSVERSALITY THEOREM
    Vokrinek, Lukas
    ARCHIVUM MATHEMATICUM, 2008, 44 (05): : 523 - 533