For germs of holomorphic functions f:(Cm+1,0)→(C,0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f: (\mathbf {C}^{m+1},0) \rightarrow (\mathbf {C},0)$$\end{document}, g:(Cn+1,0)→(C,0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g: (\mathbf {C}^{n+1},0) \rightarrow (\mathbf {C},0)$$\end{document} having an isolated critical point at 0 with value 0, the classical Thom–Sebastiani theorem describes the vanishing cycles group Φm+n+1(f⊕g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Phi ^{m+n+1}(f \oplus g)$$\end{document} (and its monodromy) as a tensor product Φm(f)⊗Φn(g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Phi ^m(f) \otimes \Phi ^n(g)$$\end{document}, where (f⊕g)(x,y)=f(x)+g(y),x=(x0,…,xm),y=(y0,…,yn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(f \oplus g)(x,y) = f(x) + g(y), x = (x_0,{\ldots },x_m), y = (y_0,{\ldots },y_n)$$\end{document}. We prove algebraic variants and generalizations of this result in étale cohomology over fields of any characteristic, where the tensor product is replaced by a certain local convolution product, as suggested by Deligne. They generalize Fu (Math Res Lett 21:101–119, 2014). The main ingredient is a Künneth formula for RΨ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R\Psi $$\end{document} in the framework of Deligne’s theory of nearby cycles over general bases. In the last section, we study the tame case, and the relations between tensor and convolution products, in both global and local situations.