La0.75Sr0.25Cr0.5Mn0.5O3−δ-Ce0.8Gd0.2O1.9 composite electrodes as anodes in LaGaO3-based direct carbon solid oxide fuel cellsLa0.75Sr0.25Cr0.5Mn0.5O3−δ–Ce0.8Gd0.2O1.9复合电极用作LaGaO3基直接碳固体氧化物燃料电池阳极的研究

被引:0
|
作者
Tian-yu Chen
Yong-min Xie
Zhi-bin Lu
Liang Wang
Zhe-qin Chen
Xiao-cong Zhong
Jia-ming Liu
Rui-xiang Wang
Zhi-feng Xu
Shao-bo Ouyang
机构
[1] Jiangxi University of Science and Technology,Faculty of Materials Metallurgy and Chemistry
[2] Ganzhou Engineering Technology Research Center of Green Metallurgy and Process Intensification,undefined
[3] Jiangxi College of Applied Technology,undefined
来源
关键词
direct carbon solid oxide fuel cells; anode material; La; Sr; Cr; Mn; O; -Ce; Gd; O; composite electrodes; Ni nanoparticles; 直接碳固体氧化物燃料电池; 阳极材料; La; Sr; Cr; Mn; O; −Ce0.8Gd0.2O1.9复合电极; Ni 纳米颗粒;
D O I
暂无
中图分类号
学科分类号
摘要
Direct carbon solid oxide fuel cells (DC-SOFCs) are promising, green, and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures. Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge. Herein we investigated the use of La0.75Sr0.25Cr0.5Mn0.5O3−δ-Ce0.8Gd0.2O1.9 (LSCM—GDC) composite electrodes as anodes for La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte-based DC-SOFCs, with Camellia oleifera shell char as the carbon fuel The LSCM—GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm2 at 800 °C and it significantly improved to 425 mW/cm2 after Ni nanoparticles were introduced into the LSCM—GDC anode through wet impregnation The microstructures of the prepared anodes were characterized, and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied The above results indicate that LSCM—GDC anode is promising to be applied in DC-SOFCs.
引用
收藏
页码:1788 / 1798
页数:10
相关论文
共 50 条
  • [31] (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells
    Jiang, SP
    Chen, XJ
    Chan, SH
    Kwok, JT
    Khor, KA
    SOLID STATE IONICS, 2006, 177 (1-2) : 149 - 157
  • [32] 固体氧化物燃料电池复合电解质粉体BaCe0.8Y0.2O3–δ-Ce0.8Gd0.2O1.9的制备及表征
    林冬
    王群浩
    彭开萍
    硅酸盐学报, 2012, 40 (05) : 752 - 757
  • [33] Nanostructured palladium-La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3-ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells
    Jiang, San Ping
    Ye, Yinmei
    He, Tianmin
    Ho, See Boon
    JOURNAL OF POWER SOURCES, 2008, 185 (01) : 179 - 182
  • [34] 中温固体氧化物燃料电池La0.8Sr0.2MnO3-Ba0.5Sr0.5Co0.8Fe0.2O3-σ阴极的制备研究
    刘波
    贾礼超
    欧阳瑞丰
    李箭
    陶瓷学报, 2019, 40 (01) : 99 - 102
  • [35] Electrochemical Properties of Cathode Material La0.75Sr0.25Cr0.5Mn0.5O3 for Single Chamber Solid Oxide Fuel Cell (SC-SOFC)
    He Fang
    Sun Li-Ping
    Zhang Guo-Ying
    Lin Nan
    Zhao Hui
    Pijolat, Christophe
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2011, 27 (02) : 281 - 286
  • [36] Performance of La0.5Sr0.5Fe0.9Mo0.1O3-δ -Sm0.2Ce0.8O2-δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells
    Chen, Yuee
    Zhang, Leilei
    Wang, Chong
    Cai, Hongdong
    Wang, Li
    Song, Zhaoyuan
    IONICS, 2018, 24 (09) : 2717 - 2728
  • [37] GDC-impregnated, (La0.75Sr0.25)(Cr0.5Mn0.5)O3 anodes for direct utilization of methane in solid oxide fuel cells
    Jiang, SP
    Chen, XJ
    Chan, SH
    Kwok, JT
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (05) : A850 - A856
  • [38] Performance of La0.5Sr0.5Fe0.9Mo0.1O3 − δ–Sm0.2Ce0.8O2 − δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells
    Yuee Chen
    Leilei Zhang
    Chong Wang
    Hongdong Cai
    Li Wang
    Zhaoyuan Song
    Ionics, 2018, 24 : 2717 - 2728
  • [39] Enhanced performance of solid oxide fuel cells with Ni/CeO2 modified La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes
    Zhu, Xingbao
    Lue, Zhe
    Wei, Bo
    Chen, Kongfa
    Liu, Mingliang
    Huang, Xiqiang
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2009, 190 (02) : 326 - 330
  • [40] 浸渍Gd0.2Ce0.8O1.9对固体氧化物燃料电池La0.8Sr0.2Co0.2Fe0.8O3-δ阴极铬中毒影响的研究
    付梦雨
    金英敏
    李栋
    宗鑫
    张雪柏
    熊岳平
    陶瓷学报, 2022, 43 (01) : 54 - 61